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This Volume of  
 

INSPIRE 
 

is being dedicated to  
 

Paṇini 
 

  Paṇini was a Sanskrit grammarian, logician, philologist, and revered scholar 

in ancient India, variously dated between the 7th and 4th century BCE. Panini was 

an ancient Vedic Indian Mathematician and Father of linguist. After all he is widely 

regarded as the father of Sanskrit grammar. His magnum opus, the Aṣṭadhyaya is a 

comprehensive and systematic treatise on Sanskrit morphology, phonology, and 

syntax. Panini's work had a profound impact on the development of Indian 

linguistics and literature. His rules and principles were adopted by later 

grammarians and scholars, and his influence can be seen in the works of many 

classical Indian authors.  

  In addition to his contributions to linguistics, Panini also made significant 

contributions to the development of mathematics. He introduced the concept of zero 

and developed a system of mathematical notation that is still used in India today. 

He also made contributions to the study of astronomy and physics. Panini's work is 

considered to be one of the most important contributions to Indian culture and 

scholarship. He is remembered as a brilliant and innovative thinker whose work has 

had a lasting impact on the world. 
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FOREWORD 
 

 The present volume of INSPIRE contains the various research papers of 

Faculty and Research Scholars of Department of Mathematics, INSTITUTE FOR 

EXCELLENCE IN HIGHER EDUCATION, BHOPAL (M. P.).  

 For me it is the realization of a dream which some of us have been nurturing 

for long and has now taken a concrete shape through the frantic efforts and good 

wishes of our dedicated band of research workers in our country, in the important 

area of mathematics.   

 The editor deserves to be congratulated for this very successful venture. The 

subject matter has been nicely and systematically presented and is expected to be 

of use to the workers.   

 

                (Dr. Pragyesh Kumar Agarwal)  

                  Director & Patron  

                                                                                     IEHE, Bhopal (M. P.) 
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STUDY OF VARIATION IN Dst INDEX  

AND OCCUEENCE OF SEISMIC EVENT 
 

Santosh Kumar Jain 
 

Department of Physics,  

Institute for Excellence in Higher Education Bhopal M.P., India 

 

ABSTRACT 
 

   This review summarizes the observational and statistical literature on whether 

variations in the geomagnetic Dst index (a widely used measure of ring-current-driven 

geomagnetic storms) are associated with changes in earthquake occurrence. I summarize 

background physical ideas, the main empirical approaches used (superposed epoch 

analysis, time-lag/binomial tests, spectral/wavelet approaches), highlight representative 

positive and null findings, discuss methodological pitfalls and biases, and outline a research 

agenda to clarify whether a real, reproducible link exists and, if so, by what mechanism. 
 

1. INTRODUCTION: 

 Interest in solar–terrestrial influences on seismicity has waxed and waned 

for decades. The Dst (Disturbance storm time) index is a one-number daily (and 

hourly) measure of the strength of the equatorial ring current, commonly used to 

identify geomagnetic storms. Several recent statistical studies have reported 

apparent clustering of geomagnetic storms near the times of large earthquakes; 

other studies, however, find no robust association once catalogue biases and 

statistical pitfalls are controlled for. The result is a mixed literature that requires 

careful, method-aware synthesis.  

  The Dst index (hourly values; negative values indicate enhanced westward 

ring current and storm-time depressions of the equatorial magnetic field) is 

produced from a network of low-latitude magnetometers and widely used to 

quantify storm magnitude and timing. Geomagnetic storms are driven by solar wind 

structures (CMEs, high-speed streams) and are accompanied by large variations in 

ionospheric currents, magnetospheric electric fields, energetic particle 

precipitation, and induced ground-level magnetic-and-electric fields. These space-

weather changes can (in principle) lead to electromagnetic induction in the crust 

and lithosphere, changes in pore-fluid pressures via electrokinetic coupling, or 

modulation of shallow geoelectric conditions — all suggested pathways by which 

external electromagnetic forcing could, hypothetically, alter near-failure stress 

conditions on faults. Mechanistic plausibility has been proposed, but remains 

highly speculative and quantitatively unproven. 

Empirical approaches used in the literature 

  Researchers have used a handful of common approaches: 

1. Superposed epoch analysis (SEA) — Examine average Dst (or storm 

counts) in windows before/after earthquakes and test whether pre-event or 

post-event means deviate from random expectation.  
 

1 
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2. Time-lag/binomial / shift-matching tests — Shift storm/event series 

relative to each other to assess time-lagged association (e.g., increases at 

particular lags like ~27–28 days). 

3. Case studies — Detailed investigations of individual large earthquakes and 

nearby ionospheric/geomagnetic disturbances.  

4. Spectral and wavelet analyses — look for common periodicities or 

coherence between seismicity rates and geomagnetic indices.  

  Each method has strengths and vulnerabilities. SEA is intuitive but sensitive 

to temporal clustering in seismic catalogs (aftershock sequences), catalog 

completeness, and the choice of “isolated” versus clustered events. Time-lag 

searches risk multiple-testing problems (search many lags and you will find some 

apparently significant peaks by chance). Case studies can be suggestive but cannot 

establish generality. 
 

2. RESULTS: 

2.1 Studies reporting confident relations 

  A number of statistical analyses have reported increased geomagnetic-storm 

activity in the days prior to major earthquakes (e.g., M ≥ 7.0 global events during 

1957–2020), using SEA and significance testing to argue that more geomagnetic 

storms occur before large earthquakes than after them; some studies report strongest 

signals ~7–10 days pre-event for “isolated” large events. 

  More recent work analysing nearly a century of Dst/Kp data has reported 

increases in earthquake counts following intense geomagnetic storms, and specific 

analyses have suggested an increased earthquake probability at particular time 

span. 

  Conversely, several analyses find little or no robust relationship once 

careful controls are applied. Time-series and statistical reanalyses conclude that 

apparent correlations can be produced by catalog non-stationarity, aftershock 

contamination, multiple testing, or arguably insufficient control of confounders. 

These works caution that the bulk of seismic energy release is governed by tectonics 

and internal stress evolution, and that external solar–geomagnetic forcing (if real) 

would be a small modulating term, lags (for example ~27–28 days after intense 

storms) using shift-matching correlation methods. These studies argue for a non-

random association at particular timescales.  
 

2.2 Studies reporting null or weak results: Number of studies also report a weak 

connection in between variation in Dst index and seismic occurrence. 
 

3. CHALLENGES: 

1. Catalog completeness and delustering. Aftershock sequences produce 

strong temporal clustering; failure to decluster or to restrict to “isolated” 

mainshocks can create spurious associations. Several positive studies 

attempt to use isolated-event subsets, but different declustering algorithms 

change results.  
2 
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2. Multiple testing and data dredging. Searching many windows, lags, 

magnitudes, and indices without correcting for the number of trials inflates 

false positives. The reported ~27–28 day lag peaks are an example where 

multiple-lag searching may amplify chance findings.  

3. Physical mechanism and effect size. Proposed mechanisms (electrokinetic 

pumping, piezoelectric modulation, stress changes from induced currents) 

are often qualitative; quantitative estimates of induced stress perturbations 

versus tectonic stress drops are typically orders of magnitude smaller. That 

mismatch challenges causal interpretation even when statistical associations 

appear. 

4. Selection bias and hindsight. Choosing well-known large earthquakes and 

then searching nearby records for anomalies risks confirmation bias. 

Prospective forecasting tests (pre-registered hypotheses tested on out-of-

sample data) are rare. 

5. Index choice and data sources. Different geomagnetic indices (Dst, Kp, 

AE, local magnetometer components, TEC) measure different aspects of 

magnetospheric/ionospheric disturbance; the association may be index-

dependent. Studies that combine multiple indices increase opportunities for 

spurious cross-correlations unless carefully corrected.  
 

4. RECCOMENDATIONS FOR FUTURE RESEARCH: 

1. Pre-registration and out-of-sample testing. Define hypotheses and 

analysis pipelines before examining data; evaluate on withheld time periods 

or future data to avoid overfitting. 

2. Consistent declustering and sensitivity checks. Report results for 

multiple declustering algorithms and for both global and regionally 

confined catalogs. 

3. Multi-index approach with corrections. Limit the number of indices/lags 

tested, apply multiple-comparison corrections, and be transparent about all 

trials. 

4. Mechanistic modeling. Build quantitative models that estimate induced 

stress or pore-pressure changes from realistic geomagnetic/ionospheric 

perturbations, then compare those to typical fault critical stress thresholds. 

5. Regional studies. If a true effect exists it may be conditional on lithology, 

crustal conductivity, or tectonic state; focused regional analyses (with high 

local magnetometer coverage and dense seismic catalogs) could be more 

sensitive than global aggregation.  
 

5. CONCLUSION: 

  There is active, modern interest in whether geomagnetic storms (as 

measured by Dst and related indices) influence earthquake occurrence. Some well-

executed statistical studies report signals suggesting non-random temporal 

association, but others find no robust link once methodological issues are 

controlled. 
3 
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The balance of evidence currently points to inconclusive results: intriguing 

statistical hints exist but do not yet demonstrate a strong, reproducible causal effect. 

Resolving the question will require tightly pre-registered hypothesis tests, careful 

control of seismic catalog biases, quantitative mechanistic modelling that shows a 

plausible effect size, and replication on independent datasets. 
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REVIEW ARTICLE ON BARDEEN - COOPER AND SCHRIEFFER 

THEORY OF SUPERCONDUCTING PHENOMENA 
 

Santosh Kumar Jain and Shruti Pandharipande 

Department of Physics and Electronics 

Institute for Excellence in Higher Education, Bhopal, M.P, India 
 

ABSTRACT 
 

  The aim of, this review article to study the BCS theory with 

superconducting experimental aspects for different materials. The BCS theory is 

solely based on the electron-phonon-electron interaction to explain the 

conventional superconductivity in materials. It became a widely used theory to 

predict the nature of materials. However, time to time it failed to explain the 

continuous growing number of superconducting phenomena classified as 

‘unconventional’. It could not account for many unknown variables like coulombic 

pseudo potential and magnetic spin fluctuation. Hence a need to revisit the for 

understanding and more importantly the application of BCS theory is essential. 
 

1. Introduction: 

  Many theories which we learn today have been there for quite some time 

now, but our textbooks forget to update them with time and further students grow 

up to become researchers but do not bother to ask the most fundamental question: 

does these theories actually work? Hence a time-to-time revisit of such theories 

should be done to understand their current relevance to the field, which is what 

we achieve in this review paper. 

  One such theory is the BCS theory. The Bardeen-Cooper-Schrieffer (BCS) 

theory revolutionized our understanding of superconductivity by providing the 

first microscopic explanation for this phenomenon. Its success in explaining 

conventional low-temperature superconductors, such as lead (Pb) and mercury 

(Hg), earned widespread acceptance. [1] However, the discovery of high-

temperature superconductivity in 1986 and other future developments have raised 

a question on whether BCS theory can fully account for all forms of 

superconductivity or not? [2] 

  In this review, we reexamine the foundations of BCS theory, highlighting 

areas where it has successfully predicted superconducting behavior, as well as the 

challenges posed by materials and phenomena that lie beyond its scope. We 

explore alternative theories and experimental findings that suggest the need for a 

revised or extended framework for understanding superconductivity. 
 

2. BCS: why we accept it widely: 

  It is one of the few theories in the history of Physics which won the Nobel 

prize and for a good reason. It offered a different perspective and almost 

approximate theoretical results for the superconductors present then. A theory 

worth presenting a Nobel prize for sure overachieved many milestones.  
 

5 
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  Some factors which undoubtedly contributed in proving the theory right 

are as followed. 
 

2.1. The Part which works 

  The BCS theory is based on the concept of Cooper pairs, where electrons 

with opposite momentum and spins form bound states with phonons in between. 

These pairs condense into a macroscopic quantum state, forming electron phonon 

electron interactions, resulting in zero electrical resistance [3] BCS theory also 

explains the energy gap, which is a consequence of the pairing mechanism, 

providing a barrier to electron scattering and thereby eliminating electrical 

resistance below the critical temperature 𝑇𝑐.[4] 

  It explained zero resistance perfectly. As the Cooper pairs create an energy 

gap at the Fermi surface, which leads to zero electrical resistance. The electrons 

together cancel out each other's spin and act like bosons, which share the same 

state, allowing them to coordinate their movement and reduce resistance to zero. 

This formation of Cooper pairs also prevents scattering events that would normally 

cause resistance in conventional metals.[3] 

  The theory undoubtedly was able to explain the concepts of Cooper pairs, 

of macroscopic phase coherence, and the existence of an energy gap. The electron 

phonon electron interaction leading to the formation of Cooper pairs explained 

how the smooth movement of the pair takes place in a material. The macroscopic 

phase coherence refers to how the wave function of the Cooper pairs is locked 

together, maintaining a fixed phase relationship throughout the material. This 

helps in superconducting current to flow. This also leads to a coherent state which 

further makes a energy band gap in the electronic density of states, this means to 

break the Cooper pairs down we need a certain amount of energy. [5] 

  These key elements of the theory have successfully explained and even 

predicted perplexing experimental observations, such as the nuclear magnetic 

resonance (NMR) relaxation rate [6] and Josephson tunneling [7]. However, 

despite their wide acceptance, it can be seen that several other aspects of BCS 

theory, particularly those involving the electron–phonon interaction as the driving 

mechanism, are incorrect and warrant further scrutiny. 
 

2.2 The Endurance of BCS Theory 

  Many physicists argue that the long-standing acceptance of BCS theory, 

spanning more than 50 years, is evidence of its correctness. However, it is very 

much possible that the flaws in theories can be detected anytime even after its over 

and over use. All it takes is one experimental result and we have many in the case 

of BCS theory. [8] 
 

2.3 The support of conventional superconductors 

The most widely cited evidence supports the idea that BCS electron phonon theory 

explains conventional superconductors Congress from the tunneling experiments. 

In these experiments, small "wiggles" or variations in the tunneling conductance  
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 (the current passing through a barrier between a normal metal, an insulator, and a 

superconductor) match the Maximas and Minima in the phonon density of states 

(the distribution of vibrational energy in the crystal lattice) measured through 

neutron scattering experiments. This correlation, proving the electron phonon 

interaction, has been observed in several materials, particularly lead (Pb). [9-11] 

  The interpretation of tunneling results is cast in terms of the spectral 

function 𝛼2F(ω), where F(ω) is the phonon spectral function determined from 

neutron scattering experiments. What is not emphasized is that α is itself often a 

strong function of ω that is not directly accessible to experiment. [12] 
 

3. Challenges to BCS Theory 

The challenges of BCS theory started to occur in the early 1980s when new 

materials were rapidly being discovered. Our beloved BCS theory however was 

unable to explain the superconductivity in many of these modern materials. New 

terms emerged and challenges continued to grow. Results which the complex 

formulism of BCS theory could not explain. 
 

3.1. High-Temperature Superconductors 

  The discovery of high-temperature superconductivity (HTSC) in copper-

oxide (cuprate) materials by Bednorz and Müller in 1986 posed the first major 

challenge to the BCS framework. These materials exhibit critical temperatures far 

higher than those predicted by the electron-phonon coupling mechanism central to 

BCS theory. Additionally, the pairing symmetry in HTSCs is 𝑑-wave rather than 

the conventional 𝑠-wave symmetry assumed in BCS theory, indicating that the 

pairing mechanism may be fundamentally different.[13] 

3.1.1.  Breakdown of the Phonon Mechanism 

One of the key tenets of BCS theory is that electron pairing is mediated by 

phonons—vibrations of the crystal lattice. However, in high-temperature 

superconductors, the phonon-based mechanism appears insufficient to 

explain the high 𝑇𝑐 . It is difficult to understand how an electron phonon 

electron interaction can overcome strong coulombic repulsion between the 

two electrons . This has led researchers to propose alternative mechanisms, 

such as pairing mediated by spin fluctuations or other electronic 

interactions.[14] 

3.1.2.  Pseudogap Phenomenon 

Another puzzling feature in high-temperature superconductors is the 

pseudogap phase, a state in which a partial energy gap forms above the 

superconducting transition temperature. This phase is not easily 

reconcilable with BCS theory, which predicts a full energy gap only below 

𝑇𝑐. The origin of the pseudogap remains a phenomenon which we know 

very little about, however it can definitely be experimentally observed in 

materials. It seems to be more complex than what BCS theory can explain. 

[15] 
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3.2. Iron-Based Superconductors 

  In 2008, the discovery of iron-based superconductors (FeSCs) provided 

another system that challenges the BCS framework. While FeSCs display 

superconductivity at relatively high temperatures, their electronic structure and 

pairing mechanisms differ significantly from those of both conventional 

superconductors and cuprates. Specifically, FeSCs exhibit multiple Fermi surfaces 

and unconventional pairing symmetries, further straining the applicability of the 

BCS formalism. As Unlike traditional superconductors, IBS do not contain copper 

or other common conductive elements. Instead, they rely on iron and oxygen atoms 

arranged in a specific crystal structure to exhibit superconductivity. [16-18] 
 

3.3. Exotic Superconductors 

  In addition to high-temperature and iron-based superconductors, several 

exotic systems have been discovered that do not conform to the predictions of BCS 

theory. These include: 

1. Heavy fermion superconductors: In materials like UPt₃ and CeCoIn₅, 

strong electronic 

correlations dominate, and the superconducting pairing mechanism is 

thought to involve magnetic fluctuations rather than phonons. 

2. Topological superconductors: These systems exhibit non-trivial 

topological order and host exotic quasiparticles, such as Majorana 

fermions. BCS theory, rooted in the assumption of conventional pairing, is 

not equipped to explain the unique properties of these materials. 

3. Superconductivity in doped semimetals and twisted bilayer graphene: 

These recently discovered superconductors exhibit unconventional pairing 

mechanisms that do not easily fit within the BCS framework.[19-20] 
 

3.4 Inability to explain the Meissner effect 

The Meissner effect is one of the most fundamental characteristics of 

superconductors. When a superconductor is cooled in the presence of a static 

magnetic field, an electric current spontaneously develops near its surface, 

effectively expelling the magnetic field from the interior of the material . However, 

conventional superconductivity theory fails to address two key questions: 

- How do the electrons near the surface of the superconductor acquire the 

necessary velocity to screen the magnetic field inside? 

- How is angular momentum conserved during this process? 

These are fundamental questions that relate directly to the core nature of 

superconductivity.[8] 

  In response to the first question, a conventional theorist might argue that 

because the final state, with supercurrent flowing, has a lower free energy than the 

initial state, the system will naturally transition to this state. However, the 

supercurrent is a macroscopic phenomenon, and there should be a clearly 

identifiable macroscopic force that causes the electrons near the surface to move 

in the same direction to generate the necessary current.  
 

8 
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  A typical response would be that the force driving this motion is -𝑑𝐹/𝑑𝑥 (the 

change in free energy over distance), and no further explanation is needed. Yet, 

this reasoning is flawed.[22] 

  Contrary to this explanation, Faraday’s law predicts the presence of an 

induced electric field, which exerts a force on the charge carriers in the opposite 

direction of what is needed to generate the Meissner current . For the supercurrent 

to form, the superconductor must overcome this opposing force with another force 

acting in the correct direction on the superfluid carriers. The -𝑑𝐹/𝑑𝑥 term, which 

suggests a force along the azimuthal direction (needed to create the Meissner 

current), does not correspond to a real, physical force. The only relevant forces in 

this context (excluding gravitational and nuclear forces) are the Lorentz 

electromagnetic force and quantum pressure, which refers to the natural tendency 

of quantum particles to reduce their kinetic energy by expanding their 

wavefunctions . However, neither of these forces plays a role in the Meissner effect 

according to conventional superconductivity theory.[23] 

  Addressing the second question, regarding angular momentum 

conservation, is even more challenging within the conventional framework. In the 

final state, the supercurrent carries mechanical angular momentum, while the total 

angular momentum in the normal state is zero, creating a situation of "missing 

angular momentum”. A common explanation is that this angular momentum is 

transferred to the ionic lattice, but the conventional theory does not provide a clear 

mechanism for how this transfer would occur. If the electrons were to transfer 

angular momentum to the lattice through scattering with impurities or phonons, 

this process should be clearly described, as the ions involved are essentially 

classical objects. Yet, no such explanation has been provided, and it has been 

argued that it may be impossible to describe this process within the framework of 

conventional superconductivity theory .[24-28] 
 

4. Alternative Theoretical Approaches 

  Given the limitations of BCS theory in explaining non-conventional 

superconductors, several alternative and extended theoretical models have been 

proposed. 
 

4.1. Eliashberg Theory 

  Eliashberg theory extends the BCS formalism to account for strong 

electron-phonon interactions and retardation effects. While this approach has been 

successful in explaining certain strong-coupling superconductors, it still relies on 

phonon-mediated pairing, limiting its applicability to materials where the electron-

phonon interaction is dominant.[29] 
 

4.2. Spin-Fluctuation Mediated Pairing 

  In both cuprate and iron-based superconductors, spin fluctuations are 

believed to play a crucial role in mediating the pairing interaction. This theory 

posits that the exchange of virtual spin excitations, rather than phonons,  
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leads to electron pairing. This mechanism naturally explains the 𝑑-wave pairing 

symmetry observed in cuprates and the unconventional pairing in FeSCs.[30] 
 

4.3. Quantum Criticality and Superconductivity 

Many unconventional superconductors, including heavy fermion and iron-based 

systems, exhibit superconductivity in the vicinity of a quantum critical point 

(QCP)—a point at which a continuous phase transition occurs at absolute zero. 

Quantum fluctuations near the QCP may provide the pairing mechanism in these 

materials, suggesting that superconductivity in these systems is fundamentally tied 

to quantum critical behavior, a phenomenon outside the scope of BCS theory.[31] 
 

5. Experimental Evidence Challenging BCS Predictions 

  Several experimental findings provide evidence for superconducting 

behavior that deviates from BCS predictions: 

5.1. Nodal Structures and Gap Anisotropy 

In many unconventional superconductors, such as cuprates and heavy fermion 

systems, the superconducting gap is highly anisotropic, with nodes (zero-gap 

points) in certain directions. This stands in stark contrast to the isotropic gap 

predicted by BCS theory for 𝑠-wave superconductors.[32] 

5.2. Unconventional Symmetry 

Experiments on materials like strontium ruthenate (Sr₂RuO₄) and uranium-based 

superconductors suggest that the pairing symmetry in these systems may be odd-

parity or spin-triplet, which is incompatible with the even-parity spin-singlet 

pairing assumed in BCS theory.[33] 
 

6. Conclusion: Is It Time to Move Beyond BCS? 

  While this paper has focused primarily on the BCS theory, the broader 

implications extend across various domains of contemporary science. The same 

forces that contribute to the persistence of BCS theory may also be sustaining other 

flawed scientific frameworks today. As knowledge grows and becomes more 

specialized, incoming students increasingly depend on “gatekeepers” – professors, 

mentors, and established scientists – to guide their entry into the scientific 

community. These gatekeepers often have vested interests in maintaining the 

status quo. A young scientist with revolutionary ideas that challenge established 

norms may face strong discouragement, and even risk being denied opportunities 

in the field if they persist. By the time scientists reach an established position, they 

are typically conditioned to accept the dominant truths. 

In the case of BCS theory, it would be beneficial for journal editors to be more 

open to papers that critically evaluate or challenge its validity, while recognizing 

that some referees may have vested interests in rejecting such work. Allowing 

these critical papers to be published in mainstream journals would encourage both 

younger scientists and seasoned experts, especially those who are starting to have 

doubts in light of recent experimental findings, to explore alternatives to 

conventional BCS theory.  
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  Funding agencies should allocate at least a small portion of resources to 

support experimental and theoretical studies that question BCS theory. Likewise, 

conference and workshop organizers should invite speakers whose research 

critically examines the theory, rather than avoiding these discussions. 

  Despite being more than fifty years old, BCS theory has never successfully 

predicted a high-temperature superconductor and provides no useful guidance for 

the discovery of new superconducting materials. Furthermore, it has failed to 

explain the superconductivity of ten families of compounds discovered over the 

last three decades, as well as fundamental phenomena such as the Meissner effect 

and the behavior of rotating superconductors. 

  It is time to seriously consider that the stagnation in our understanding of 

high-temperature cuprates and other unconventional superconductors may stem 

from our failure to fully understand conventional superconductors. The possibility 

must be acknowledged that BCS theory is fundamentally flawed, and just as other 

long-standing scientific theories have been overturned in the past, it may soon be 

time for BCS theory to undergo a significant overhaul. 
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ABSTRACT 

  The goal of this paper is to define rational contraction in the context of S-

metric spaces and develop various fixed-point theorems in order to elaborate, 

generalize, and synthesize a number of previously published results. Finally, to 

illustrate the new theorem, an example is given. 
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1. Introduction:  

                Fixed point theory is crucial in science and mathematics. This topic has 

drawn a lot of interest from academics in the last two decades due to its wide range 

of applications in disciplines such as nonlinear analysis, topology, and engineering 

difficulties. The Banach contraction principle [2] is the starting point for most 

generalizations of metric fixed point theorems. It's difficult to enumerate all of this 

principle's generalizations. The Banach fixed-point theorem [2] ensures the 

existence and uniqueness of fixed points of particular self-maps of metric spaces, as 

well as a constructive approach for discovering them. The S-metric space was 

introduced by Sedghi et al. [9]. It's a three-dimensional space called the S-metric 

space. The concept of A-metric space was established by Abbas et al. [1], which is 

a generalization of S-metric space. Jaggi [7], Das and Gupta [3] discovered the 

fixed-point theorem for rational contractive type conditions in metric space. The 

goal of this paper is to define rational contraction in the setting of S-metric spaces, 

as well as to create various fixed-point theorems to elaborate, generalize, and 

synthesize several previously published results. Finally, an example is given to 

demonstrate the new theorem. 
 

2. Preliminaries 

            Some valuable information and ideas will be presented in this section. Metric 

spaces are very important in mathematics and applied sciences. So, some authors 

have tried to give generalizations of metric spaces in several ways. Sedghi et al. [8, 

10] introduced the notion of a D∗-metric space as follows. 

Definition 2.1 (see [8, 10]) Let X  be a non-empty set. A D∗ -metric on X  is a 

function  D∗: X3 → [0, +∞)  that satisfies the following conditions, for each 

x, y, z, a ∈ X; 
(D*1). D∗(x, y, z) ≥ 0, 
(D*2). D∗(x, y, z) = 0if and only if x = y = z. 
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(D*3). D∗(x, y, z) = D∗{x, y, z} (Symmetry in all three variables), 

(D*4). D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z). 

Then D∗ is called a D∗-metric on X and (X, D∗) is called a D∗-metric space. 

Definition 2.2 (see [9]) Let X be a nonempty set. A mapping S: X3 → [0, +∞) is 

called an S-metric on X if and only if for all x, y, z, a ∈ X, the following conditions 

hold: 

(S1). S(x, y, z) ≥ 0, 
(S2). S(x, y, z) = 0 if and only if x = y = z, 
(S3). S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a) 

The pair (X, S) is called an S-metric space. 

The following is the intuitive geometric example for S-metric spaces.  

Example 2.3 (see [9]) Let X = R2 and d be the ordinary metric on X. Put 

                                  S(x, y, z) =  d(x, y) + d(x, z) + d(y, z) 

for all x, y, z ∈ X, that is, S is the perimeter of the triangle given by x, y, z. Then S is 

an S-metric on X. 

Example 2.4  Let X = [1, +∞) . Define S: X3 → [0, +∞) by  

                              S(y1, y2, y3) = ∑3
i=1 ∑i<j |yi − yj| 

for all yi ∈ X, i = 1,2,3. 

Lemma 2.5 (see [9]) Let (X, S) be an S-metric space. Then for all x, y ∈ X, 
                                                 S(x, x, y) = S(y, y, x).  

Lemma 2.6 Let (X, S) be an S-metric space. Then for all x, y, z ∈ X, 
                       S(x, x, z) ≤ 2S(x, x, y) + S(y, y, z) and 

                       S(x, x, z) ≤ 2S(x, x, y) + S(z, z, y). 

Definition 2.7 (see [9]) Let X be an S-metric space. 

(i). A sequence {yn} converges to y if and only if S(yn, yn, y)  = 0. That is for 

each ϵ > 0  there exists n0 ∈ N such that for all n ≥ n0, S(yn, yn, y) < ϵ 

and we denote this by 

                                               yn  = y. 

(ii).  A sequence {yn}  is called a Cauchy if S(yn, yn, ym)  = 0. That is, for each  

ϵ > 0 there exists n0 ∈ N such that for all n, m ≥ n0, S(yn, yn, ym) < ϵ. 

(iii). X is called complete if every Cauchy sequence in X is a convergent. 

From (see [9]), we have the following. 

Example 2.8 

(a). Let R be the real line. Then 

S(x, y, z) = |x − z| + |y − z| 
for all x, y, z ∈ R, is an S-metric on R. This S-metric is called the usual S-

metric on R. Furthermore, the usual S-metric space R is complete. 

(b). Let X be a non-empty set of R. Then 

S(x, y, z) = |x − z| + |y − z| 
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, is an S-metric on 𝑋. If 𝑋 is a closed subset of the usual 

metric space 𝑅, then the S-metric space 𝑋 is complete. 
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Lemma 2.9 (see [9]) Let (𝑋, 𝑆) be an S-metric space. If the sequence {𝑦𝑛} in 𝑋 

converges to 𝑦, then 𝑦 is unique. 

Lemma 2.10 (see [9]) Let (𝑋, 𝑆) be an S-metric space. If  

                                                      𝑦𝑛  = 𝑦 and  𝑧𝑛  = 𝑧. 
Then 

                                                      𝑆(𝑦𝑛, 𝑦𝑛, 𝑧𝑛)  = 𝑆(𝑦, 𝑦, 𝑧). 

Remark 2.11 It is easy to see that every 𝐷∗-metric is S-metric, but in general the 

converse is not true, see the following example. 

Example 2.12 Let 𝑋 = 𝑅𝑛 and ‖ . ‖ a norm on 𝑋, then 

𝑆(𝑥, 𝑦, 𝑧) = ‖𝑦 + 𝑧 − 2𝑥‖ + ‖𝑦 − 𝑧‖ 

is S-metric on 𝑋, but it is not 𝐷∗-metric because it is not symmetric. 

The following lemma shows that every metric space is an S-metric space. 

Lemma 2.13 Let (𝑋, 𝑑) be a metric space. Then we have 

(1). 𝑆𝑑(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 is an S-metric on 𝑋. 

(2). 𝑥𝑛  = 𝑥 in (𝑋, 𝑑) if and only if 𝑥𝑛  = 𝑥 in (𝑋, 𝑆𝑑). 

(3). {𝑥𝑛}𝑛=1
∞  is Cauchy in (𝑋, 𝑑) if and only if {𝑥𝑛}𝑛=1

∞  is Cauchy in (𝑋, 𝑆𝑑). 

(4). (𝑋, 𝑑) is complete if and only if (𝑋, 𝑆𝑑) is complete. 
 

Example 2.14 Let 𝑋 = 𝑅 and let 

𝑆(𝑥, 𝑦, 𝑧) = |𝑦 + 𝑧 − 2𝑥| + |𝑦 − 𝑧| 
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. By ([9]), (𝑋, 𝑆) is an S-metric space.  Dung et al. [4] proved 

that there does not exist any metric 𝑑 such that 

𝑆(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Indeed, suppose to the contrary that there exists a metric 𝑑 with 

𝑆(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) 

 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then 

                                          𝑑(𝑥, 𝑧) =
1

2
𝑆(𝑥, 𝑥, 𝑧) = 2|𝑥 − 𝑧| and  

𝑑(𝑥, 𝑦) =
1

2
𝑆(𝑥, 𝑦, 𝑦) = 2|𝑥 − 𝑦| 

 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. It is a contradiction. 

In 2012, Sedghi et al. [9] asserted that an S-metric is a generalization of a G-metric, 

that is, every G-metric is an S-metric, see [9, Remarks 1.3] and [9, Remarks 2.2]. 

The Example 2.1 and Example 2.2 of Dung et al. [4] shows that this assertion is not 

correct. Moreover, the class of all S-metrics and the class of all G-metrics are 

distinct.  

Definition 2.15 (see [11]) Let (𝑋, ≼)  be a partially ordered set and let 𝐹: 𝑋 → 𝑋 

be a mapping. Then  

1. elements 𝑦, 𝑧 ∈ 𝑋 are comparable, if 𝑦 ⪯ 𝑧 or 𝑧 ⪯ 𝑦 holds; 

2. a non empty set 𝑋 is called well ordered set, if every two elements of it are 

comparable; 

3. 𝐹 is said to be monotone non-decreasing w.r.t. ⪯, if for all 𝑦, 𝑧 ∈ 𝑋, 𝑦 ⪯ 𝑧 

implies 𝐹𝑦 ⪯ 𝐹𝑧; 
 

16 



INSPIRE                ISSN: 2455-6742 
Vol. 10, Nov. 2024 & May 2025, No. 01 & 02      14-21 
 

4. 𝐹 is said to be monotone non-increasing w.r.t. ⪯, if for all 𝑦, 𝑧 ∈ 𝑋, 𝑦 ⪯ 𝑧 

implies 𝐹𝑦 ⪰  𝐹𝑧. 

3. Main Results 

First, we introduce following definitions. 

Definition 3.1 The triple (𝑋, 𝑆, ≼) is called partially ordered 𝑆-metric spaces if 

(𝑋, ≼) could be a partial ordered set and (𝑋, 𝑆) be a 𝑆-metric space. 

Definition 3.2 If 𝑋 is complete 𝑆-metric, then (𝑋, 𝑆, ≼) is called complete partially 

ordered metric space. 

Definition 3.3 A partially ordered 𝑆-metric space (𝑋, 𝑆, ≼) is called an ordered 

complete (OC), if for each convergent sequence {𝑦𝑘} ⊂ 𝑋 , the subsequent 

condition holds: either 

● if {𝑦𝑘} ⊂ 𝑋 is a non-increasing sequence such that 𝑦𝑘 → 𝑦 ∈ 𝑋, then 𝑦𝑘 ≼
𝑦, for all 𝑘 ∈ 𝑁, that is, 𝑦 =𝑖𝑛𝑓 𝑖𝑛𝑓 {𝑦𝑘} , or 

● if {𝑦𝑘} ⊂ 𝑋  is a non-decreasing sequence such that 𝑦𝑘 → 𝑦  implies that 

𝑦𝑘 ≼ 𝑦, for all 𝑘 ∈ 𝑁, that is, 𝑦 =𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑦𝑘} .  
The following is our first main outcome. 

Theorem 3.1 Let (𝑋, 𝑆, ≼) be a complete partially ordred 𝑆-metric space. Suppose 

a self map 𝐹  on 𝑋  is continuous, non-decreasing and satisfies the contraction 

condition  

       𝑆(𝐹𝑦, 𝐹𝑦, 𝐹𝑧) ≤ 𝑎
𝑆(𝑦,𝑦,𝐹𝑦)𝑆(𝑧,𝑧,𝐹𝑧)

𝑆(𝑦,𝑦,𝑧)
+ 𝑏[𝑆(𝑦, 𝑦, 𝐹𝑦) + 𝑆(𝑧, 𝑧, 𝐹𝑧)] 

                                            +𝑐𝑆(𝑦, 𝑦, 𝑧)                                                                                (3.1) 

for any 𝑦 ≠ 𝑧 ∈ 𝑋 with 𝑦 ≼ 𝑧, where  𝑎, 𝑏, 𝑐 ∈ [0,1) with 0 ≤ 𝑎 + 2𝑏 + 𝑐 < 1. If 

𝑦0 ≼ 𝐹𝑦0 for certain 𝑦0 ∈ 𝑋, then 𝐹 has a fixed point.  

Proof Define a sequence, 𝑦𝑘+1 = 𝐹𝑦𝑘 for 𝑦0 ∈ 𝑋. If 𝑦𝑘0+1 = 𝑦𝑘0
 for certain 𝑦0 ∈

𝑁, then 𝑦𝑘0
 is a fixed point 𝐹. Assume that 𝑦𝑘+1 ≠ 𝑦𝑘 for each 𝑘. But 𝑦0 ≼ 𝐹𝑦0 

and 𝐹 is non-decreasing as by induction we obtain that 

                                    𝑦0 ≼ 𝑦1 ≼ 𝑦2 ≼ ⋯ ≼ 𝑦𝑘 ≼ 𝑦𝑘+1 ≤ ⋯                                  (3.2)  

By (3.1), we have 

     𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘) = 𝑆(𝐹𝑦𝑘, 𝐹𝑦𝑘, 𝐹𝑦𝑘−1) 

                        ≤ 𝑎
𝑆(𝑦𝑘,𝑦𝑘,𝐹𝑦𝑘)𝑆(𝑦𝑘−1,𝑦𝑘−1,𝐹𝑦𝑘−1)

𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘−1)
 

                       +𝑏[𝑆(𝑦𝑘, 𝑦𝑘 , 𝐹𝑦𝑘) + 𝑆(𝑦𝑘−1, 𝑦𝑘−1, 𝐹𝑦𝑘−1)] + 𝑐𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑦𝑘−1) 

                       = 𝑎
𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘+1)𝑆(𝑦𝑘−1,𝑦𝑘−1,𝑦𝑘)

𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘−1)
 

                          +𝑏[𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑦𝑘+1) + 𝑆(𝑦𝑘−1, 𝑦𝑘−1, 𝑦𝑘)] + 𝑐𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑦𝑘−1) 

                      = 𝑎
𝑆(𝑦𝑘+1,𝑦𝑘+1,𝑦𝑘)𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘−1)

𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘−1)
 

                       +𝑏[𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘) + 𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑦𝑘−1)] + 𝑐𝑆(𝑦𝑘, 𝑦𝑘 , 𝑦𝑘−1) 

                       = (𝑎 + 𝑏)𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘) + (𝑏 + 𝑐)𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑦𝑘−1) 

which infer that 

        𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘) ≤ (
𝑏+𝑐

1—𝑎−𝑏
) 𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘−1) 

                                     ≤ (
𝑏+𝑐

1—𝑎−𝑏
)

𝑘

𝑆(𝑦1, 𝑦1, 𝑦0) ≤ ⋯                                      (3.3) 

17 



INSPIRE                ISSN: 2455-6742 
Vol. 10, Nov. 2024 & May 2025, No. 01 & 02      14-21 
 

For 𝑚, 𝑘 ∈ 𝑁 with 𝑚 > 𝑘, by repeated use of (S3), we have  

            𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑚) ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 𝑆(𝑦𝑚, 𝑦𝑚, 𝑦𝑘+1) 

                                    ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑚) 

                   ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 2𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘+2) + 𝑆(𝑦𝑚, 𝑦𝑚, 𝑦𝑘+2) 

                    ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 2𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘+2) + 𝑆(𝑦𝑘+2, 𝑦𝑘+2, 𝑆𝑦𝑚) 

                  ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 2𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘+2) + 2𝑆(𝑦𝑘+2, 𝑦𝑘+2, 𝑦𝑘+3) 

                                +𝑆(𝑦𝑚, 𝑦𝑚, 𝑦𝑘+3) 

                    ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 2𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘+2) + 2𝑆(𝑦𝑘+2, 𝑦𝑘+2, 𝑦𝑘+3) 

                                +2𝑆(𝑦𝑘+3, 𝑦𝑘+3, 𝑦𝑘+4) + ⋯ + 2𝑆(𝑦𝑚−2, 𝑦𝑚−2, 𝑦𝑚−1) 

                     +𝑆(𝑦𝑚−1, 𝑦𝑚−1, 𝑦𝑚)                                 

≤ 2[𝜆𝑘 + 𝜆𝑘+1 + ⋯ + 𝜆𝑚−2]𝑆(𝑦0, 𝑦0, 𝑦1) + 𝜆𝑚−1𝑆(𝑦0, 𝑦0, 𝑦1) 

                 = 2𝜆𝑘[1 + 𝜆 + 𝜆2 + ⋯ + 𝜆𝑚−𝑘−2]𝑆(𝑦0, 𝑦0, 𝑦1) + 𝜆𝑚−𝑘−1𝑆(𝑦0, 𝑦0, 𝑦1) 

                   ≤ 2𝜆𝑘[1 + 𝜆 + 𝜆2 + 𝜆3 + ⋯ ]𝑆(𝑦0, 𝑦0, 𝑦1) 

                   ≤ 2
𝜆𝑘

1−𝜆
𝑆(𝑦0, 𝑦0, 𝑦1)                                                     (3.4) 

where 𝜆 =
𝑏+𝑐

1—𝑎−𝑏
. As 𝑘, 𝑚 → ∞ in inequality (3.6), we obtain 𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑚)  = 0. 

This shows that {𝑦𝑘} ⊂ 𝑋  is a Cauchy sequence and then 𝑦𝑘 → 𝑢 ∈ 𝑋  by its 

completeness. Besides, the continuity of 𝐹 implies that 

𝐹𝑢 = 𝐹(𝑦𝑘 ) = 𝐹𝑦𝑘  = 𝑦𝑘+1  = 𝑢 

Therefore, 𝑢 is a fixed point of 𝐹 in 𝑋 .  

Extracting the continuity of a map 𝐹 in Theorem 3.1, we have the below result.  

Theorem 3.2 If 𝑋 has an ordered complete (OC) property in Theorem 3.1, then a 

non-decreasing mapping 𝐹 has a fixed point in 𝑋. 

Proof We only claim that 𝐹𝑢 = 𝑢. By an ordered complete metrical property of 𝑋, 

we have 𝑢 =𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑦𝑘} , for 𝑘 ∈ 𝑁  as 𝑦𝑘 →  𝑢 ∈  𝑋  is a non-decreasing 

sequence. The non-decreasing property of a map 𝐹  implies that 𝐹𝑦𝑘 ≼ 𝐹𝑢  or, 

equivalently, 𝑦𝑘+1 ≼ 𝐹𝑢, for 𝑘 ≥ 0. Since, 𝑦0 ≺ 𝑦1 ≼  𝐹𝑢 and 𝑢 =𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑦𝑘}  
as a result, we get 𝑢 ≼  𝐹𝑢. Assume 𝑢 ≺ 𝐹𝑢. From Theorem 3.1, there is a non-

decreasing sequence 𝐹𝑘𝑢 ∈  𝑋 with 𝐹𝑘𝑢 = 𝜀 ∈ 𝑋. Again, by an ordered complete 

(OC) property of 𝑋 , we obtain that 𝜀 =𝑠𝑢𝑝 𝑠𝑢𝑝 {𝐹𝑘𝑢} . Furthermore, 𝑦𝑘 =
𝐹𝑘𝑦0 ≼ 𝐹𝑘𝑢, for 𝑘 ≥ 1 as a result, 𝑦𝑘 ≺ 𝐹𝑘𝑢, for 𝑘 ≥ 1, since 𝑦𝑘 ≼ 𝑢 ≺ 𝐹𝑢 ≼
𝐹𝑘𝑢, for 𝑘 ≥ 1 whereas 𝑦𝑘 and 𝐹𝑘𝑢, for 𝑘 ≥ 1 are distinct and comparable.  

Now we have the discussion below in the subsequent cases. 

Case-1 If 𝑆(𝑦𝑘, 𝑦𝑘 , 𝐹𝑘𝑢) ≠ 0, then (3.1) becomes, 

   𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝐹𝑘+1𝑢) = 𝑆(𝐹𝑦𝑘, 𝐹𝑦𝑘, 𝐹(𝐹𝑘𝑢)) 

             ≤ 𝑎
𝑆(𝑦𝑘,𝑦𝑘,𝐹𝑦𝑘)𝑆(𝐹𝑘𝑢,𝐹𝑘𝑢,𝐹𝑘+1𝑢)

𝑆(𝑦𝑘,𝑦𝑘,𝐹𝑘𝑢)
 

            +𝑏[𝑆(𝑦𝑘 , 𝑦𝑘 , 𝐹𝑦𝑘) + 𝑆(𝐹𝑘𝑢, 𝐹𝑘𝑢, 𝐹𝑘+1𝑢)] 
             +𝑐𝑆(𝑦𝑘, 𝑦𝑘 , 𝐹𝑘𝑢)        

             = 𝑎
𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘+1)𝑆(𝐹𝑘𝑢,𝐹𝑘𝑢,𝐹𝑘+1𝑢)

𝑆(𝑦𝑘,𝑦𝑘,𝐹𝑘𝑢)
 

         +𝑏[𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑦𝑘+1) + 𝑆(𝐹𝑘𝑢, 𝐹𝑘𝑢, 𝐹𝑘+1𝑢)] + 𝑐𝑆(𝑦𝑘 , 𝑦𝑘 , 𝐹𝑘𝑢)    (3.5)      
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As 𝑘 → ∞ in (3.5), we get  

                                            𝑆(𝑢, 𝑢, 𝜀) ≤ 𝑐𝑆(𝑢, 𝑢, 𝜀) 

as a result, we have, 𝑆(𝑢, 𝑢, 𝜀) = 0 . Hence 𝑢 = 𝜀 . In particular, 𝑢 = 𝜀 =
𝑠𝑢𝑝 𝑠𝑢𝑝 {𝐹𝑘𝑢}  in consequence, we get 𝐹𝑢 ≼ 𝑢, a contradiction. Therefore,𝐹𝑢 =
𝑢. 

Case-2 Case-1 If 𝑆(𝑦𝑘, 𝑦𝑘, 𝐹𝑘𝑢) = 0, then, 𝑆(𝑢, 𝑢, 𝜀) = 0 as 𝑘 → ∞. By following 

the similar argument in Case 1, we get 𝐹𝑢 = 𝑢. 

Corollary 3.1 Let (𝑋, 𝑆, ≼) be a complete partially ordred 𝑆-metric space. Suppose 

a self map 𝐹  on 𝑋  is continuous, non-decreasing and satisfies the contraction 

condition  

      𝑆(𝐹𝑦, 𝐹𝑦, 𝐹𝑧) ≤ 𝑎
𝑆(𝑦,𝑦,𝐹𝑦)𝑆(𝑧,𝑧,𝐹𝑧)

𝑆(𝑦,𝑦,𝑧)
+ 𝑏𝑆(𝑦, 𝑦, 𝐹𝑦) + 𝑐𝑆(𝑦, 𝑦, 𝑧)              (3.6) 

for any 𝑦 ≠ 𝑧 ∈ 𝑋  with 𝑦 ≼ 𝑧,  where 𝑎, 𝑏, 𝑐 ∈ [0,1)  with  0 ≤ 𝑎 + 𝑏 + 𝑐 < 1 . If 

𝑦0 ≼ 𝐹𝑦0 for certain 𝑦0 ∈ 𝑋, then 𝐹 has a fixed point.  

Proof. It follows by 𝐿 = 0 in Theorem 3.1. 

Corollary 3.2 Let (𝑋, 𝑆, ≼) be a complete partially ordred 𝑆-metric space. Suppose 

a self map 𝐹  on 𝑋  is continuous, non-decreasing and satisfies the contraction 

condition  

         𝑆(𝐹𝑦, 𝐹𝑦, 𝐹𝑧) ≤ 𝑎
𝑆(𝑦,𝑦,𝐹𝑦)𝑆(𝑧,𝑧,𝐹𝑧)

𝑆(𝑦,𝑦,𝑧)
+ 𝑐𝑆(𝑦, 𝑦, 𝑧)                                  (3.7) 

for any 𝑦 ≠ 𝑧 ∈ 𝑋  with 𝑦 ≼ 𝑧,  where 𝐿 ≥ 0,  and 𝑎, 𝑏, 𝑐 ∈ [0,1)  with  0 ≤ 𝑎 +
2𝑏 + 𝑐 < 1. If 𝑦0 ≼ 𝐹𝑦0 for certain 𝑦0 ∈ 𝑋, then 𝐹 has a fixed point.  

Proof. Taking 𝑏 = 0, 𝐿 = 0 in Theorem 3.1, we obtain the desired result. 

We conclude with an example.  

Example 3.1 Let (𝑅, 𝑆, ≼)  be a totally ordered complete 𝑆-metric space with 𝑆-

metric defined as in Example 2.8 (a). Let 𝐹: 𝑅 → 𝑅 be a map defined by 𝐹(𝑦) =
3𝑦+24𝑛−3

24𝑛
 for all 𝑛 ≥  1. It is evident that 𝐹 is continuous and non-decreasing in 𝑅 

and 𝑦0 = 0 ∈ 𝑅 such that 𝑦0 = 0 ≼ 𝐹𝑦0 . Taking 𝑎 = 0, 𝑏 = 0, 𝑐 =
1

𝑛
. For 𝑦 ≼ 𝑧, 

we have  
                      𝑆(𝐹𝑦, 𝐹𝑦, 𝐹𝑧) = 2|𝐹𝑦 − 𝐹𝑧| 

                                            = 2 |
3𝑦+24𝑛−3

24𝑛
−

3𝑧+24𝑛−3

24𝑛
| 

                                            = 2 |
3(𝑦−𝑧)

24𝑛
| =

1

𝑛
|

𝑦−𝑧

4
| 

                                            ≤
1

𝑛
|𝑦 − 𝑧| =

1

𝑛
𝑆(𝑦, 𝑦, 𝑧) 

                                            ≤ 𝑎
𝑆(𝑦,𝑦,𝐹𝑦)𝑆(𝑧,𝑧,𝐹𝑧)

𝑆(𝑦,𝑦,𝑧)
+ 𝑏[𝑆(𝑦, 𝑦, 𝐹𝑦) + 𝑆(𝑧, 𝑧, 𝐹𝑧)] 

                                            +𝑐𝑆(𝑦, 𝑦, 𝑧) 

holds for every 𝑦, 𝑧 ∈ 𝑅 . For 𝐿 ≥ 0  and 𝑎, 𝑏, 𝑐 ∈ [0, 1) such that 0 ≤ 𝑎 + 2𝑏 +

𝑐 < 1, in particular, if we take 𝑎 = 0, 𝑏 = 0, 𝑐 =
1

𝑛
, then 0 ≤ 𝑎 + 2𝑏 + 𝑐 < 1 and 

1 ∈ 𝑅 is a fixed point of 𝐹 as all the conditions of Theorem 3.1 are satisfied. 
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Abstract 

  Our aim is to introduce the desire of a Parametric Super Metric and study 

some basic properties of Parametric Super Metric Spaces which is a generalization 

of Parametric and Super Matric Space We give some fixed-point results on a 

complete Parametric Super Metric Space. Some illustrative examples are given to 

show that our result are valid. 
 

1. Introduction: 

  A fixed point of a function is a point that stays fixed by the application of 

the function. Fixed points, which can be considered as equilibrium states or 

solutions to equations, have important applications in many mathematical areas, 

such as numerical analysis, optimization, and dynamical systems. An example 

involves numerical methods, where finding a fixed point by iteration can also be 

relevant to solving the equation that one is iterating. 

  One of the fundamental results in the theory of metric spaces is the Banach 

Contraction Principle, the Contraction Mapping Theorem. Informally, it states 

under which conditions a mapping from a metric space into itself admits a unique 

fixed point. This theorem applies to many different areas: functional analysis, 

numerical methods, optimization-the name really is apt, being used to prove 

convergence of an iterative process and to guarantee existence and uniqueness of 

solutions of equations. Since then, the Banach contraction principle has been 

extraordinarily generalized (refer to [1-15]).   

  Then, Kannan [10] in 1968 introduced an important alteration to the 

theorem removing the continuity, an important step in the development of metric 

fixed-point theory, after which the Kannan theorem has been considered in several 

generalizations. 

  It was another prominent one put forward by Dass and Gupta [2], wherein 

the notion of Rational Contraction has been introduced. In contrast to the classical 

Banach contraction, which strictly relied on a constant contraction factor, their 

method allowed the contraction condition to be expressed in terms of rational 

functions to provide more flexibility. This very broad paradigmatic framework 

ensures the existence and uniqueness of fixed points using rational functions' 

properties and the completeness of the underlying metric space.  
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  Also, Fulga and Karapinar [4] presented the notion of a super-metric space, 

which gave birth to new fixed-point theorems. Through this novel idea, some 

limitations such as congestion and stringent constraints encountered in previous 

works could be resolved. 

  In super metric space, we establish some common fixed-point theorems for 

rational contractions. These theorems expand and generalize several intriguing 

findings from metric fixed-point theory to the super metric setting. Furthermore, 

we present an example to illustrate our theorems. 
  

2. Preliminaries: 

First, we recall the basic results and definitions. 

Definition 2.1 (see [5]) Consider 𝑋 to be a non-empty set. A function 𝑑: 𝑋 × 𝑋 →
[0, +∞) is considered a super metric if it fulfills the subsequent axioms:  

(s1). ∀ 𝑥, 𝑦 ∈ 𝑋, if 𝑑(𝑥, 𝑦) = 0 ⟹  𝑥 = 𝑦. 
(s2). ∀ 𝑥, 𝑦 ∈ 𝑋, 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥). 

(s3). There exists 𝑠 ≥ 1 such that for every 𝑦 ∈ 𝑋, there exist distinct sequences 
{𝑥𝑖}, {𝑦𝑖} ⊂ 𝑋, with 𝑑(𝑥𝑖, 𝑦𝑖) → 0 when 𝑖 → ∞, such that  

                             𝑑(𝑦𝑖, 𝑦)  ≤ 𝑠𝑑(𝑥𝑖, 𝑦)  
The tripled (𝑋, 𝑑, 𝑠) is called a super metric space.  

Definition 2.2 (see [5]) A sequence {𝑥𝑖} on a super metric space (𝑋, 𝑑, 𝑠): 
1) converges to 𝑥 ∈ 𝑋 ⟺ 𝑑(𝑥𝑖, 𝑥)  = 0. 

2) is a Cauchy sequence in 𝑋 ⟺ {𝑑(𝑥𝑖, 𝑥𝑗): 𝑗 > 𝑖} = 0.  

Proposition 2.3 (see [5]) The limit of a convergent sequence is unique on a super 

metric space.  

Definition 2.4 (see [5]) A super-metric space (𝑋, 𝑑, 𝑠) is called complete iff each 

Cauchy sequence is convergent in 𝑋.   

Theorem 2.5 (see [5]) Let (𝑋, 𝑑, 𝑠)  be a complete super-metric space and let 

𝐺: 𝑋 → 𝑋 be a mapping. Suppose that 0 < 𝑐 < 1 such that  

                                            𝑑(𝐺𝑥, 𝐺𝑦) ≤ 𝑐 𝑑(𝑥, 𝑦)                                                               

for all (𝑥, 𝑦) ∈ 𝑋. Then, 𝐺 has a unique fixed point in 𝑋. 

Theorem 2.6 (see [5]) Let (𝑋, 𝑑, 𝑠) be a complete super metric space and 𝐺: 𝑋 → 𝑋 

be a mapping, such that there exist 𝑐 ∈ [0, 1) and that 

                                   𝑑(𝐺𝑥, 𝐺𝑦) ≤ 𝑐 {𝑑(𝑥, 𝑦),
𝑑(𝑥,𝐺𝑥)𝜂(𝑦,𝐺𝑦)

𝜂(𝑥,𝑦)+1
}                                    

Then, 𝐺 has a unique fixed point. 
 

3. Main Results 

Our first main result as follows. 

Theorem 3.1 Let (𝑋, 𝑑, 𝑠) be a complete super-metric space and let 𝐹, 𝐺 be self-

mappings of 𝑋. If there exist real numbers  𝑘1,  𝑘2 ≥ 0  with  𝑘1 + 2 𝑘2 < 1 such 

that 

                  𝑑(𝐹𝑥, 𝐺𝑦) ≤  𝑘1
𝑑(𝑥,𝐹𝑥)𝑑(𝑦,𝐺𝑦)

1+𝑑(𝑥,𝑦)
+  𝑘2[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝐹𝑥)]       (3.1) 

for all 𝑥, 𝑦 ∈ 𝑋. Then, 𝐹 and 𝐺 have a unique common fixed point in 𝑋. 
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Proof. Let 𝑥0 ∈ 𝑋 and we define the class of iterative sequences {𝑥𝑖} such that 

𝑥𝑖+1 = 𝐹𝑥𝑖 , 𝑥𝑖+2 = 𝐺𝑥𝑖+1 for all 𝑖 ∈ 𝑁. Without loss of generality, we assume that 

𝑥𝑖+2 ≠ 𝐺𝑥𝑖+1 for each nonnegative integer 𝑖. Indeed, if there exist a nonnegative 

integer 𝑖0 such that 𝑥𝑖0+2 = 𝐺𝑥𝑖0+1, then our proof of the Theorem proceeds as 

follows. Thus, from (3.1), we have 

   0 < 𝑑(𝑥𝑖+1, 𝑥𝑖+2) = 𝑑(𝐹𝑥𝑖 , 𝐺𝑥𝑖+1) 

                                 ≤  𝑘1
𝑑(𝑥𝑖,𝐹𝑥𝑖)𝑑(𝑥𝑖+1,𝐺𝑥𝑖+1)

1+𝑑(𝑥𝑖,𝑥𝑖+1)
+  𝑘2[𝑑(𝑥𝑖, 𝑥𝑖+1) + 𝑑(𝑥𝑖, 𝐹𝑥𝑖)]           

                                 =  𝑘1
𝑑(𝑥𝑖,𝑥𝑖+1)𝑑(𝑥𝑖+1,𝑥𝑖+2)

1+𝑑(𝑥𝑖,𝑥𝑖+1)
+ 2𝑘2𝑑(𝑥𝑖 , 𝑥𝑖+1)     

                                 ≤  𝑘1𝑑(𝑥𝑖+1, 𝑥𝑖+2) + 2𝑘2𝑑(𝑥𝑖 , 𝑥𝑖+1)    

The last inequality gives 

                             0 < 𝑑(𝑥𝑖+1, 𝑥𝑖+2) ≤
2𝑘2

1− 𝑘1
𝑑(𝑥𝑖, 𝑥𝑖+1) = 𝑐1 𝑑(𝑥𝑖, 𝑥𝑖+1) 

where 𝑐1 =
2 𝑘2

1− 𝑘1
. From this, we can write 

0 < 𝑑(𝑥𝑖+1, 𝑥𝑖+2) ≤ 𝑐1 𝑑(𝑥𝑖 , 𝑥𝑖+1) ≤ 𝑐1
2 𝑑(𝑥𝑖−1, 𝑥𝑖) ≤ ⋯ ≤ 𝑐1

𝑖+1 𝑑(𝑥0, 𝑥1)         (3.2) 

On the other hand, one writes 
   0 < 𝑑(𝑥𝑖+1, 𝑥𝑖) = 𝑑(𝐹𝑥𝑖, 𝐺𝑥𝑖−1) 

                             ≤  𝑘1
𝑑(𝑥𝑖,𝐹𝑥𝑖)𝑑(𝑥𝑖−1,𝐺𝑥𝑖−1)

1+𝑑(𝑥𝑖,𝑥𝑖−1)
+  𝑘2[𝑑(𝑥𝑖, 𝑥𝑖−1) + 𝑑(𝑥𝑖 , 𝐹𝑥𝑖)] 

                             =  𝑘1
𝑑(𝑥𝑖,𝑥𝑖+1)𝑑(𝑥𝑖−1,𝑥𝑖)

1+𝑑(𝑥𝑖,𝑥𝑖−1)
+  𝑘2[𝑑(𝑥𝑖 , 𝑥𝑖−1) + 𝑑(𝑥𝑖 , 𝑥𝑖+1)]     

                             ≤ (𝑘1 + 𝑘2)𝑑(𝑥𝑖 , 𝑥𝑖+1) +  𝑘2𝑑(𝑥𝑖 , 𝑥𝑖−1)    

which yields that, 

                                0 < 𝑑(𝑥𝑖+1, 𝑥𝑖) ≤
 𝑘2

1−(𝑘1+𝑘2)
𝑑(𝑥𝑖, 𝑥𝑖−1) = 𝑐2 𝑑(𝑥𝑖, 𝑥𝑖−1) 

And then, we can write 

   0 < 𝑑(𝑥𝑖 , 𝑥𝑖+1) ≤ 𝑐2 𝑑(𝑥𝑖 , 𝑥𝑖−1) ≤ 𝑐2
2 𝑑(𝑥𝑖−1, 𝑥𝑖−2) ≤ ⋯ ≤ 𝑐2

𝑖 𝑑(𝑥0, 𝑥1)      (3.3) 

Set 𝑐 = {𝑐1, 𝑐2} . By appealing to (3.2) and (3.3), we find that 

                               0 < 𝑑(𝑥𝑖, 𝑥𝑖+1) ≤ 𝑐𝑖  𝑑(𝑥0, 𝑥1)                                       (3.4) 

Taking the limit 𝑖 tends to infinity in inequality (3.4), we get  

                                               𝑑(𝑥𝑖, 𝑥𝑖+1)  = 0.                                   (3.5) 

In what follows, we want to show that the sequence {𝑥𝑖} is a Cauchy sequence. 

Now suppose that, 𝑖, 𝑗 ∈ 𝑁 with  𝑖 > 𝑗.Then from inequality (3.5) and using (s3), 

we get 

𝑠𝑢𝑝 𝑠𝑢𝑝 𝑑(𝑥𝑖, 𝑥𝑖+2)   ≤ 𝑠 𝑠𝑢𝑝 𝑠𝑢𝑝 𝑑(𝑥𝑖+1, 𝑥𝑖+2)   ≤ 𝑠 𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑐𝑖+1 𝑑(𝑥0, 𝑥1)}   (3.6) 

Hence, 𝑠𝑢𝑝 𝑠𝑢𝑝 𝑑(𝑥𝑖, 𝑥𝑖+2)   = 0.  

Similarly, we have 

𝑠𝑢𝑝 𝑠𝑢𝑝 𝑑(𝑥𝑖, 𝑥𝑖+3)   ≤ 𝑠 𝑠𝑢𝑝 𝑠𝑢𝑝 𝑑(𝑥𝑖+2, 𝑥𝑖+3)   ≤ 𝑠 𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑐𝑖+2 𝑑(𝑥0, 𝑥1)}    (3.7) 

  Inductively, one can conclude that 𝑠𝑢𝑝 𝑠𝑢𝑝 { 𝑑(𝑥𝑖, 𝑥𝑗): 𝑖 > 𝑗}   = 0. Thus, 

{𝑥𝑖} is a Cauchy sequence in a complete super-metric space (𝑋, 𝑑, 𝑠), the sequence 
{𝑥𝑖}

 converges to 𝑥∗ ∈ 𝑋 and then 𝑑(𝑥𝑖 , 𝑥∗)  = 0.  Further, we show that 𝑥∗ is the 

fixed point of 𝐹  and 𝐺 . If not, 𝑥∗ ≠ 𝐹𝑥∗ ≠ 𝐺𝑥∗,  and then 𝑑(𝑥∗, 𝐹𝑥∗) > 0  and 

𝑑(𝑥∗, 𝐺𝑥∗) > 0. Note that 
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 0 < 𝑑(𝑥𝑖+2, 𝐹𝑥∗) = 𝑑(𝐹𝑥∗, 𝑥𝑖+2) = 𝑑(𝐹𝑥∗, 𝐺𝑥𝑖+1) 

                              ≤  𝑘1
𝑑(𝑥∗,𝐹𝑥∗)𝑑(𝑥𝑖+1,𝐺𝑥𝑖+1)

1+𝑑(𝑥∗,𝑥𝑖+1)
+  𝑘2[𝑑(𝑥∗, 𝑥𝑖+1) + 𝑑(𝑥∗, 𝐹𝑥∗)] 

                              =  𝑘1
𝑑(𝑥∗,𝐹𝑥∗)𝑑(𝑥𝑖+1,𝑥𝑖+2)

1+𝑑(𝑥∗,𝑥𝑖+1)
+  𝑘2[𝑑(𝑥∗, 𝑥𝑖+1) + 𝑑(𝑥∗, 𝐹𝑥∗)] 

Taking 𝑖 → ∞, we derive 𝑠𝑢𝑝 𝑠𝑢𝑝 𝑑(𝑥𝑖+2, 𝐹𝑥∗)   ≤ 0. Thus, we have, 

           0 < 𝑑(𝑥∗, 𝐹𝑥∗) ≤𝑠𝑢𝑝 𝑠𝑢𝑝 𝑑(𝑥𝑖+2, 𝐹𝑥∗)   ≤ 0                                         (3.8) 

and one can conclude that 𝑑(𝑥∗, 𝐹𝑥∗) = 0, which implies that 𝐹𝑥∗ = 𝑥∗ .On the 

other hand,     

 0 < 𝑑(𝑥𝑖+2, 𝐺𝑥∗) = 𝑑(𝐹𝑥𝑖+1, 𝐺𝑥∗) 

                              ≤  𝑘1
𝑑(𝑥𝑖+1,𝐹𝑥𝑖+1)𝑑(𝑥∗,𝐺𝑥∗)

1+𝑑(𝑥𝑖+1,𝑥∗)
+  𝑘2[𝑑(𝑥𝑖+1, 𝑥∗) + 𝑑(𝑥𝑖+1, 𝐹𝑥𝑖+1)] 

                              =  𝑘1
𝑑(𝑥𝑖+1,𝑥𝑖+2)𝑑(𝑥∗,𝐺𝑥∗)

1+𝑑(𝑥𝑖+1,𝑥∗)
+  𝑘2[𝑑(𝑥𝑖+1, 𝑥∗) + 𝑑(𝑥𝑖+1, 𝑥𝑖+2)] 

Taking 𝑖 → ∞, we derive 𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑥𝑖+2, 𝐺𝑥∗)   ≤ 0. Thus, we have, 

               0 < 𝑑(𝑥∗, 𝐺𝑥∗) ≤𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑥𝑖+2, 𝐺𝑥∗)   ≤ 0                                     (3.9) 

and one can conclude that 𝑑(𝑥∗, 𝐹𝑥∗) = 0, which implies that 𝐺𝑥∗ = 𝑥∗. Hence, 

𝑥∗ is a common fixed point of 𝐹 and 𝐺. We shall now prove the uniqueness of 𝑥∗. 

Suppose there exists another point 𝑦∗ ∈ 𝑋 such that  𝐹𝑦∗ = 𝐺𝑦∗ =  𝑦∗. Then, by 

inequality (3.1), we have   

                 𝑑(𝐹𝑥∗, 𝐺𝑦∗) ≤  𝑘1
𝑑(𝑥∗,𝐹𝑥∗)𝑑(𝑦∗,𝐺 𝑦∗)

1+𝑑(𝑥∗,𝑦∗)
+  𝑘2[𝑑(𝑥∗, 𝑦∗) + 𝑑(𝑥∗, 𝐹𝑥∗)  ] 

                                      ≤  𝑘2𝑑(𝑥∗, 𝑦∗) < 𝑑(𝑥∗, 𝑦∗)                                  (3.10) 

which is a contradiction.  

If we take 𝐹 = 𝐺 in condition (3.1), then we obtain the following corollary. 

Corollary 3.2 Let (𝑋, 𝑑, 𝑠) be a complete super-metric space and let 𝐹 be a self-

mapping of 𝑋. If there exist real numbers  𝑘1,  𝑘2 ≥ 0  with  𝑘1 + 2𝑘2 < 1 such 

that 

         𝑑(𝐹𝑥, 𝐹𝑦) ≤  𝑘1
𝑑(𝑥,𝐹𝑥)𝑑(𝑦,𝐹𝑦)

1+𝑑(𝑥,𝑦)
+  𝑘2[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝐹𝑥)]                            (3.11) 

for all 𝑥, 𝑦 ∈ 𝑋. Then, 𝐹 has a unique fixed point in 𝑋. 

If we take  𝑘1 = 0 in Theorem 3.1 and Corollary 3.2, respectively, then we obtain 

the following corollaries.  

Corollary 3.3 Let (𝑋, 𝑑, 𝑠) be a complete super-metric space and let 𝐹, 𝐺 be self-

mappings of 𝑋. If there exists real number 0 ≤  𝑘2 < 1 such that  

                   𝑑(𝐹𝑥, 𝐺𝑦) ≤  𝑘2[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝐹𝑥)]                                                (3.12) 

for all 𝑥, 𝑦 ∈ 𝑋. Then, 𝐹 and 𝐺 have a unique common fixed point in 𝑋. 

Corollary 3.4 Let (𝑋, 𝑑, 𝑠) be a complete super-metric space and let 𝐹 be a self-

mapping of 𝑋. If there exists real number 0 ≤  𝑘1 < 1 such that  

                    𝑑(𝐹𝑥, 𝐹𝑦) ≤  𝑘1𝑑(𝑥, 𝑦)                                                           (3.13) 

for all 𝑥, 𝑦 ∈ 𝑋. Then, 𝐹 has a unique fixed point in 𝑋. 

We give an example which satisfy the conditions of Theorem 3.1. 
 

Example 3.5 Let  𝑠 = 1, and the function 𝑑: [0, 1] × [0, 1] → [0, +∞) be defined 

as follows: 
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                        𝑑(𝑥, 𝑦) = 𝑥𝑦 for all 𝑥 ≠ 𝑦, and 𝑥, 𝑦 ∈ (0, 1);  
  𝑑(𝑥, 𝑦) = 0 for all 𝑥 = 𝑦, and 𝑥, 𝑦 ∈ [0, 1];  
  𝑑(0, 𝑦) = 𝑑(𝑦, 0) = 𝑦 for all 𝑦 ∈ (0,1]; 

  𝑑(1, 𝑦) = 𝑑(𝑦, 1) = 1 −
𝑦

2
 for all 𝑦 ∈ [0,1); 

First, we claim that 𝑑 is super-metric on [0, 1]. We will concentrate on (s3) because 

(s1) and (s2) are simple to confirm. For any 𝑦 ∈ (0, 1) , we can choose the 

sequences {𝑥𝑖}, {𝑦𝑖} ⊂ [0, 1], where 

                                       𝑥𝑖 =
𝑖2+1

𝑖2+2
,  and 𝑦𝑖 =

𝑖+1

𝑖2+2
, for any 𝑛 ∈ 𝑁.  

Since                                𝑥𝑖  =
𝑖2+1

𝑖2+2
 =

1+
1

𝑖2

1+
2

𝑖2

 = 1  

and                          𝑦𝑖  =
𝑖+1

𝑖2+2
 =

1+
1

𝑖

𝑖(1+
2

𝑖2)
 = 0. 

Then, we have        𝑑(𝑥𝑖, 𝑦𝑖)  = 𝑥𝑖𝑦𝑖  =
𝑖2+1

𝑖2+2
 

𝑖+1

𝑖2+2
=

1+
1

𝑖2

1+
2

𝑖2

 
1+

1

𝑖

𝑖(1+
2

𝑖2)
 = 0. 

Thus,  

𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑥𝑖, 𝑦)   =𝑠𝑢𝑝 𝑠𝑢𝑝  𝑥𝑖𝑦  =𝑠𝑢𝑝 𝑠𝑢𝑝 {( 
𝑖2 + 1

𝑖2 + 2
) 𝑦}   

= 𝑦 𝑠𝑢𝑝 𝑠𝑢𝑝 ( 
𝑖2 + 1

𝑖2 + 2
)   = 𝑦, 

𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑦𝑖, 𝑦)   =𝑠𝑢𝑝 𝑠𝑢𝑝  𝑦𝑖𝑦  =𝑠𝑢𝑝 𝑠𝑢𝑝 {( 
𝑖 + 1

𝑖2 + 2
) 𝑦}   

= 𝑦 𝑠𝑢𝑝 𝑠𝑢𝑝 ( 
𝑖 + 1

𝑖2 + 2
)   = 0, 

Therefore,  𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑦𝑖, 𝑦)   = 0 < 𝑦 = 𝑠 𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑥𝑖, 𝑦), and (s3) holds. 

If 𝑦 = 0, using the same sequences, we get 

𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑥𝑖, 𝑦)   =𝑠𝑢𝑝 𝑠𝑢𝑝  𝑥𝑖   =𝑠𝑢𝑝 𝑠𝑢𝑝 
𝑖2 + 1

𝑖2 + 2
  = 1, 

𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑦𝑖, 𝑦)   =𝑠𝑢𝑝 𝑠𝑢𝑝  𝑦𝑖   =𝑠𝑢𝑝 𝑠𝑢𝑝 
𝑖 + 1

𝑖2 + 2
  = 0, 

Therefore,  𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑦𝑖, 𝑦)   = 0 < 1 = 𝑠 𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑥𝑖 , 𝑦),  and again (s3) 

holds.  

If 𝑦 = 1, using choosing 𝑥𝑖 =
𝑖+1

𝑖2+2
,  and 𝑦𝑖 =

𝑖+2

𝑖+3
, for any 𝑛 ∈ 𝑁. Then  

                                𝑥𝑖  =
𝑖+1

𝑖2+2
 = 0 and 𝑦𝑖  =

𝑖+2

𝑖+3
 = 1. 

Then, we have 

                    𝑑(𝑥𝑖, 𝑦𝑖)  = 𝑥𝑖𝑦𝑖  =
𝑖+1

𝑖2+2
 
𝑖+2

𝑖+3
= 0. 

Thus,   𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑥𝑖 , 𝑦)   =𝑠𝑢𝑝 𝑠𝑢𝑝 (1 −
 𝑥𝑖

2
)   

=𝑠𝑢𝑝 𝑠𝑢𝑝 (1 −
𝑖 + 1

2(𝑖2 + 2)
)   =𝑠𝑢𝑝 𝑠𝑢𝑝 

2𝑖2 − 𝑖 + 3

2(𝑖2 + 2)
  = 1, 
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𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑦𝑖, 𝑦)   =𝑠𝑢𝑝 𝑠𝑢𝑝 (1 −
 𝑦𝑖

2
)   =𝑠𝑢𝑝 𝑠𝑢𝑝 (1 −

𝑖 + 2

2(𝑖 + 3)
)   

=𝑠𝑢𝑝 𝑠𝑢𝑝 
𝑖 + 4

2(𝑖 + 3)
  =

1

2
, 

Therefore,  𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑦𝑖, 𝑦)   =
1

2
< 1 = 𝑠 𝑠𝑢𝑝 𝑠𝑢𝑝  𝑑(𝑥𝑖, 𝑦)  , 

and again (s3) holds. Hence, 𝑑 defines a super-metric on [0, 1]. Define mappings 

𝐹, 𝐺: [0, 1] → [0, 1] as  

  𝐹𝑥 =
𝑥

4
, if 𝑥 ∈ [0,1) and 𝐹𝑥 =

1

16
, if 𝑥 = 1, 

   𝐺𝑥 =
𝑥

2
, if 𝑥 ∈ [0,1) and 𝐺𝑥 =

1

8
, if 𝑥 = 1. 

Taking  𝑘1 =
1

9
,  𝑘2 =

1

3
 

We consider the following cases: 

1. If 𝑥, 𝑦 ∈ (0,1), we have  

          𝑑(𝐹𝑥, 𝐺𝑦) = 𝑑 (
𝑥

4
,

𝑦

2
) =

𝑥𝑦

8
≤

1

9

𝑥2𝑦2

(8+𝑥𝑦)
+

1

3
(𝑥𝑦 + 𝑥2) 

                            ≤  𝑘1
𝑑(𝑥,𝐹𝑥)𝑑(𝑦,𝐺𝑦)

1+𝑑(𝑥,𝑦)
+  𝑘2[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝐹𝑥)] 

2. If 𝑥 = 0, 𝑦 ∈ (0,1), we have  

          𝑑(𝐹𝑥, 𝐺𝑦) = 𝑑(𝐹0, 𝐺𝑦) = 𝑑 (0,
𝑦

2
) =

𝑦

2
≤

1

3
𝑦 +

1

9
0 +

1

9

𝑦2

2
+

1

9
0 

                            ≤  𝑘1
𝑑(𝑥,𝐹𝑥)𝑑(𝑦,𝐺𝑦)

1+𝑑(𝑥,𝑦)
+  𝑘2[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝐹𝑥)] 

3. If 𝑥 = 0, 𝑦 = 0, or 𝑥 = 1, 𝑦 = 1, we have  

          𝑑(𝐹𝑥, 𝐺𝑦) = 0 ≤
1

3
𝑑(𝑥, 𝑦) +

1

3
𝑑(𝑥, 𝐹𝑥) +

1

9
𝑑(𝑦, 𝐺𝑦) +

1

9

𝑑(𝑥,𝐹𝑥)𝑑(𝑦,𝐺𝑦)

1+𝑑(𝑥,𝑦)
  ≤  𝑘1

𝑑(𝑥,𝐹𝑥)𝑑(𝑦,𝐺𝑦)

1+𝑑(𝑥,𝑦)
+  𝑘2[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝐹𝑥)] 

4. If 𝑥 = 0, 𝑦 = 1, we have  

 𝑑(𝐹𝑥, 𝐺𝑦) = 𝑑(𝐹0, 𝐺1) = 𝑑 (0,
1

8
) =

1

8
  ≤

1

3
(1) +

1

3
(0) +

1

9

1

8
+

1

9

(0)(
1

8
)

1+1
 

                        =  𝑘1
𝑑(𝑥,𝐹𝑥)𝑑(𝑦,𝐺𝑦)

1+𝑑(𝑥,𝑦)
+  𝑘2[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝐹𝑥)] 

5. If 𝑥 = 1, 𝑦 ∈ (0,1), we have  

 𝑑(𝐹𝑥, 𝐺𝑦) = 𝑑(𝐹1, 𝐺𝑦) = 𝑑 (
1

16
,

𝑦

2
) =

𝑦

32
≤

1

3
𝑦 +

1

3

1

16
+

1

9

𝑦2

2
+

1

9

𝑦2

32

1+𝑦
 

                            ≤  𝑘1
𝑑(𝑥,𝐹𝑥)𝑑(𝑦,𝐺𝑦)

1+𝑑(𝑥,𝑦)
+  𝑘2[𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝐹𝑥)] 

  In view of Theorem 3.1, we conclude that 𝐹 and 𝐺 have a unique common 

fixed point 0 ∈ [0,1]. 
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Abstract  

      In this paper, we establish a fixed point theorem for contraction-type 

mappings within the framework of generalized metric spaces. The proposed result 

significantly extends and unifies several existing fixed point theorems by relaxing 

conventional contractive conditions and broadening the scope of applicability in 

nonstandard metric structures.  
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1. Introduction  

      The notion of a generalized metric space, introduced by Branciari [4], 

replaces the standard triangle inequality of a metric space with a more general 

inequality involving four points instead of three. Every metric space is a generalized 

metric space, but the converse does not hold Branciari [4]. Within this framework, 

Branciari established the well-known Banach fixed point theorem, and subsequent 

studies have further generalized his result. This naturally raises the question of 

whether other classical fixed point theorems—particularly those not strictly 

dependent on contraction mappings can also be extended to generalized metric 

spaces. In this paper, we explore this possibility by focusing on such results and 

establishing a fixed point theorem that extends existing results through slight yet 

meaningful generalizations suited for these broader spaces.   

      Specifically, we generalize the result of Saluja [14], by employing a more 

flexible inequality condition, thereby broadening the applicability of fixed point 

results in the context of generalized metric spaces.  
 

2. Preliminaries  

Following definitions are required in the sequel. 

Throughout, the letters R and N will denote the set of all non-negative real numbers 

and the set of all positive integers respectively. 

Definition 2.1: Let X be a set and 𝒅: 𝑿𝟐  →  𝑹+ a mapping such that for all 𝒙, yϵX 

and there exist a point conditions. X. different from x and y, one has following 

(i) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 =  𝑦 

(ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦. 𝑥) 

(iii)𝑑(𝑥, 𝑦) ≤  𝑑(𝑥. 𝑧)  +  𝑑(𝑧. 𝑦) 
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Then we will say that (𝑋, 𝑑) is a metric space. 

Definition 2.2: Let X be a set and  𝑑: 𝑋2  →  𝑅+   a mapping such that for all 

𝑥, 𝑦 𝜖 𝑋 and for all distinct point 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛 𝜖 𝑋. cach of them different from 

x and y. one has 

(i)  𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 =  𝑦 

(ii)  𝑑(𝑥, 𝑦) = 𝑑(𝑦. 𝑥) 

(iii) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥. 𝑥1) + 𝑑(𝑥1, 𝑥2) +  … + 𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦)  Then we 

will say that (𝑋. 𝑑) is generalized metric space (or shortly g.m.s.) 

Definition 2.3: 1.et (𝑋. 𝑑) be a g.m.s. A sequence {𝑥𝑛} in 𝑋 is said to be a Cauchy 

sequence if for any 𝜔 >  0 there exist 𝑛 ∈  𝑁 such that for all 𝑚, 𝑛𝜖 𝑁, 𝑛 ≤ 𝑚, one 

has 𝑑(𝑥𝑛, 𝑥𝑛+𝑚)  <  𝜀. Then (𝑋. 𝑑) is called complete if every Cauchy sequence in 

X is convergent in X. 

Let T:X→ X be a mapping where X is a g. m. s. for each x ∈ X  

  𝑂(𝑥, ∞)  = {𝑥, 𝑇𝑥, 𝑇2𝑥 … . } 

Definition 2.4: X is said to be T-orbitally complete if and only if every Cauchy 

sequence which is contained in 𝑂(𝑥, ∞) for some 𝑥𝜖𝑋 converges in X. 

Definition 2.4: X is said to be T-orbitally complete if and only if every Cauchy 

sequence which is contained in 𝑂(𝑥, ∞)  for some  converges in X.  
 

3. Main Result   

𝑇ℎ𝑒𝑜𝑟𝑒𝑚 3.1 𝐿𝑒𝑡 (𝑋, 𝑑)𝑏𝑒 𝑎 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒. 𝐼𝑓 𝑇: 𝑋 →  𝑋 𝑖𝑠 𝑎 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

𝑑(𝑇𝑥, 𝑇𝑦) ≤  𝛽 [𝑑(𝑥, 𝑇𝑥) +  𝑑(𝑦, 𝑇𝑦) +  𝑑(𝑥, 𝑇𝑦) +  𝑑(𝑦, 𝑇𝑥) +
𝑑(𝑥,𝑦)[1+𝑑(𝑥,𝑇𝑦)]

1+𝑑(𝑥,𝑇𝑦)
 ]            

...(3.1.1) 

ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈  𝑋 𝑤ℎ𝑒𝑟𝑒 0 <  𝛽 <
1

5
, 

𝑎𝑛𝑑 𝑖𝑓 𝑋 𝑖𝑠 𝑇 − 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑙𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑡ℎ𝑒𝑛 𝑇 ℎ𝑎𝑠 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑋. 
𝑷𝒓𝒐𝒐𝒇: 

𝐿𝑒𝑡 𝑥 ∈  𝑋. 𝑁𝑜𝑤 𝑢𝑠𝑖𝑛𝑔 (3.1.1)𝑤𝑖𝑡ℎ 𝑦 =  𝑇𝑥: 𝑑(𝑇𝑥, 𝑇2𝑥)

≤  𝛽 [𝑑(𝑥, 𝑇𝑥) +  𝑑(𝑇𝑥, 𝑇2𝑥) +  𝑑(𝑥, 𝑇2𝑥)

+
𝑑(𝑥, 𝑇𝑥)[1 + 𝑑(𝑥, 𝑇2𝑥)]

1 + 𝑑(𝑥, 𝑇2𝑥)
] ⇒  𝑑(𝑇𝑥, 𝑇2𝑥)(1 −  𝛽)

≤  𝛽[2𝑑(𝑥, 𝑇𝑥) +  𝑑(𝑥, 𝑇2𝑥)] ⇒  𝑑(𝑇𝑥, 𝑇2𝑥)(1 −  2𝛽)
≤  3𝛽 𝑑(𝑥, 𝑇𝑥) 

⇒  𝑑(𝑇𝑥, 𝑇2𝑥)) ≤  (
3𝛽

(1−2𝛽)
) 𝑑(𝑥, 𝑇𝑥)                   … (3.1.2)  

𝐴𝑔𝑎𝑖𝑛 𝑢𝑠𝑖𝑛𝑔 (3.1.1)𝑓𝑜𝑟 𝑇2𝑥 𝑎𝑛𝑑 𝑇3𝑥: 

𝑑(𝑇2𝑥, 𝑇3𝑥) ≤  𝛽 [𝑑(𝑇𝑥, 𝑇2𝑥) +  𝑑(𝑇2𝑥, 𝑇3𝑥) +  𝑑(𝑇𝑥, 𝑇3𝑥)

+
𝑑(𝑇𝑥, 𝑇2𝑥)[1 + 𝑑(𝑇𝑥, 𝑇3𝑥)]

1 + 𝑑(𝑇𝑥, 𝑇3𝑥)
] 
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⇒  𝑑(𝑇2𝑥, 𝑇3𝑥)(1 −  𝛽) ≤  𝛽[2𝑑(𝑇𝑥, 𝑇2𝑥) +  𝑑(𝑇𝑥, 𝑇3𝑥)]
⇒  𝑑(𝑇2𝑥, 𝑇3𝑥)(1 −  2𝛽) ≤  3𝛽 𝑑(𝑇𝑥, 𝑇2𝑥) ⇒  𝑑(𝑇2𝑥, 𝑇3𝑥)

≤  (
3𝛽

(1 − 2𝛽)
) 𝑑(𝑇𝑥, 𝑇2𝑥)𝑈𝑠𝑖𝑛𝑔 (3.1.2)𝑎𝑔𝑎𝑖𝑛: 𝑑(𝑇2𝑥, 𝑇3𝑥)

≤  (
3𝛽

1 − 2𝛽
)

2

𝑑(𝑥, 𝑇𝑥)             . . . . (3.3.1)𝐵𝑦 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛, 𝑤𝑒 𝑔𝑒𝑡: 𝑑(𝑇ⁿ𝑥, 𝑇ⁿ+1𝑥)

≤  𝑟ⁿ 𝑑(𝑥, 𝑇𝑥)    𝑤ℎ𝑒𝑟𝑒 𝑟 = (
3𝛽

1 − 2𝛽
)

<  1𝐻𝑒𝑛𝑐𝑒, {𝑇ⁿ𝑥}𝑖𝑠 𝑎 𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. 𝐿𝑒𝑡 𝑚 >  𝑛, 𝑡ℎ𝑒𝑛: 𝑑(𝑇ⁿ𝑥, 𝑇ᵐ𝑥)
≤  𝑑(𝑇ⁿ𝑥, 𝑇ⁿ+1𝑥) +  𝑑(𝑇ⁿ+1𝑥, 𝑇ⁿ+2𝑥) + … +  𝑑(𝑇ᵐ−1𝑥, 𝑇ᵐ𝑥)
≤  𝑑(𝑥, 𝑇𝑥)(𝑟ⁿ +  𝑟ⁿ+1 +  … +  𝑟ᵐ−1)𝐿𝑒𝑡 𝑚 =  𝑛 +  𝑝, 𝑡ℎ𝑒𝑛: 𝑑(𝑇ⁿ𝑥, 𝑇ᵐ𝑥)
≤  𝑑(𝑥, 𝑇𝑥)[𝑟ⁿ +  𝑟ⁿ+1 +  … +  𝑟ⁿ+ᵖ−1]             

≤  𝑑(𝑥, 𝑇𝑥) ∗  𝑟ⁿ ∗  [
(1 −  𝑟ᵖ)

(1 − 𝑟)
]             ≤  𝑑(𝑥, 𝑇𝑥) ∗  (

𝑟ⁿ

1 − 𝑟
) 𝐴𝑠 𝑟ⁿ →  0 , 𝑛 

→  ∞, {𝑇ⁿ𝑥}𝑖𝑠 𝑎 𝐶𝑎𝑢𝑐ℎ𝑦 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒. 𝑆𝑖𝑛𝑐𝑒 𝑋 𝑖𝑠 𝑇 − 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑙𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑙𝑒𝑡𝑇ⁿ𝑥 
=  𝑢. 𝑁𝑜𝑤 𝑢𝑠𝑖𝑛𝑔 (3.1.1): 𝑑(𝑢, 𝑇𝑢)
≤  𝑑(𝑢, 𝑇ⁿ𝑥) +  𝑑(𝑇ⁿ𝑥, 𝑇ⁿ+1𝑥) +  … +  𝑑(𝑇2ⁿ−1𝑥, 𝑇2ⁿ𝑥) +  𝑑(𝑇2ⁿ𝑥, 𝑇𝑢) 

𝐴𝑔𝑎𝑖𝑛 𝑏𝑦 (3.1.1): 𝑑(𝑢, 𝑇𝑢)
≤  𝑑(𝑢, 𝑇ⁿ𝑥) +  … +  𝛽[𝑑(𝑇2ⁿ−1𝑥, 𝑇2ⁿ𝑥) +  𝑑(𝑢, 𝑇𝑢) +  𝑑(𝑇ⁿ−1𝑥, 𝑢)]
⇒  𝑑(𝑢, 𝑇𝑢)(1 −  𝛽) ≤  𝑑(𝑢, 𝑇ⁿ𝑥) +  … +  𝛽 𝑑(𝑇ⁿ−1𝑥, 𝑢)𝑇𝑎𝑘𝑖𝑛𝑔 𝑙𝑖𝑚𝑖𝑡  𝑛 
→  ∞: 𝑑(𝑢, 𝑇𝑢) ≤  0 ⇒  𝑢 
=  𝑇𝑢𝐻𝑒𝑛𝑐𝑒, 𝑢 𝑖𝑠 𝑎 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑇. 𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠: 𝐿𝑒𝑡 𝑣 𝑏𝑒 𝑎𝑛𝑜𝑡ℎ𝑒𝑟 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡, 𝑖. 𝑒. , 𝑇𝑣 
=  𝑣. 𝑈𝑠𝑖𝑛𝑔 (1)𝑤𝑖𝑡ℎ 𝑥 =  𝑢 𝑎𝑛𝑑 𝑦 =  𝑣 

𝑑(𝑇𝑢, 𝑇𝑦) ≤  𝛽 [𝑑(𝑢, 𝑇𝑢) +  𝑑(𝑣, 𝑇𝑣) +  𝑑(𝑢, 𝑇𝑣) +  𝑑(𝑣, 𝑇𝑢) +
𝑑(𝑢,𝑣)[1+𝑑(𝑢,𝑇𝑣)]

1+𝑑(𝑢,𝑇𝑣)
 ]  

𝑑(𝑢, 𝑣) =  𝑑(𝑇𝑢, 𝑇𝑣) ≤  𝛽[𝑑(𝑢, 𝑢) +  𝑑(𝑣, 𝑣) +  𝑑(𝑢, 𝑣) +  𝑑(𝑢, 𝑣) +  𝑑(𝑢, 𝑣)]

=  3𝛽 𝑑(𝑢, 𝑣)    ⇒  𝑑(𝑢, 𝑣)(1 −  3𝛽) ≤  0𝑆𝑖𝑛𝑐𝑒 0 <  𝛽 <
1

5
⇒  𝑑(𝑢, 𝑣) =  0 ⇒  𝑢 =  𝑣𝐻𝑒𝑛𝑐𝑒, 𝑡ℎ𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖𝑠 𝑢𝑛𝑖𝑞𝑢𝑒. 

𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 3.2.  𝐿𝑒𝑡 (𝑋, 𝑑)𝑏𝑒 𝑎 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒, 𝐼𝑓  𝑇: 𝑋
→ 𝑋 𝑏𝑒 𝑎 𝑚𝑎𝑝𝑝𝑖𝑛𝑔 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

                              𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑥, 𝑇𝑦)]              

ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦𝜖𝑋 𝑤ℎ𝑒𝑟𝑒 0 < 𝛽 <
1

5
 

𝑎𝑛𝑑 𝑖𝑓 𝑋 𝑖𝑠 𝑇 − 𝑜𝑟𝑏𝑖𝑡𝑎𝑙𝑙𝑦 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑡ℎ𝑒𝑛 𝑇 ℎ𝑎𝑠 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑋. 
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Abstract 
 

  The goal of this paper is to define rational contraction in the context of S-

metric spaces and develop various fixed-point theorems in order to elaborate, 

generalize, and synthesize a number of previously published results. Finally, to 

illustrate the new theorem, an example is given. 
 

1. Introduction:  

 Fixed point theory is crucial in science and mathematics. This topic has 

drawn a lot of interest from academics in the last two decades due to its wide range 

of applications in disciplines such as nonlinear analysis, topology, and engineering 

difficulties. The Banach contraction principle [6] is the starting point for most 

generalizations of metric fixed point theorems. It's difficult to enumerate all of this 

principle's generalizations. The Banach fixed-point theorem [6] ensures the 

existence and uniqueness of fixed points of particular self-maps of metric spaces, 

as well as a constructive approach for discovering them. The S-metric space was 

introduced by Sedghi et al. [30]. It's a three-dimensional space called the S-metric 

space. The concept of A-metric space was established by Abbas et al. [2], which is 

a generalization of S-metric space. Jaggi [2], Das and Gupta [13] discovered the 

fixed-point theorem for rational contractive type conditions in metric space. The 

goal of this section is to define rational contraction in the setting of S-metric spaces, 

as well as to create various fixed-point theorems to elaborate, generalize, and 

synthesize several previously published results. Finally, an example is given to 

demonstrate the new theorem. 
 

2. Preliminaries: 

 Some valuable information and ideas will be presented in this section. 

Metric spaces are very important in mathematics and applied sciences. So, some 

authors have tried to give generalizations of metric spaces in several ways. Sedghi 

et al. [29, 31] introduced the notion of a 𝐷∗-metric space as follows. 

Definition 2.1 (see [29, 31]) Let 𝑋  be a non-empty set. A 𝐷∗-metric on 𝑋  is a 

function  𝐷∗: 𝑋3 → [0, +∞)  that satisfies the following conditions, for each 

𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋; 
(D*1). 𝐷∗(𝑥, 𝑦, 𝑧) ≥ 0, 
(D*2). 𝐷∗(𝑥, 𝑦, 𝑧) = 0if and only if 𝑥 = 𝑦 = 𝑧. 

(D*3). 𝐷∗(𝑥, 𝑦, 𝑧) = 𝐷∗{𝑥, 𝑦, 𝑧} (Symmetry in all three variables), 

(D*4). 𝐷∗(𝑥, 𝑦, 𝑧) ≤ 𝐷∗(𝑥, 𝑦, 𝑧) + 𝐷∗(𝑎, 𝑧, 𝑧). 
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Then 𝐷∗ is called a 𝐷∗-metric on 𝑋 and (𝑋, 𝐷∗) is called a 𝐷∗-metric space. 

Definition 2.2 (see [3]) Let 𝑋 be a nonempty set. A mapping 𝑆: 𝑋3 → [0, +∞) is 

called an 𝑆-metric on 𝑋 if and only if for all 𝑥, 𝑦, 𝑧, 𝑎 ∈ 𝑋, the following conditions 

hold: 

(S1). 𝑆(𝑥, 𝑦, 𝑧) ≥ 0, 
(S2). 𝑆(𝑥, 𝑦, 𝑧) = 0 if and only if 𝑥 = 𝑦 = 𝑧, 
(S3). 𝑆(𝑥, 𝑦, 𝑧) ≤ 𝑆(𝑥, 𝑥, 𝑎) + 𝑆(𝑦, 𝑦, 𝑎) + 𝑆(𝑧, 𝑧, 𝑎)                                              

The pair (𝑋, 𝑆) is called an 𝑆-metric space. 

 The following is the intuitive geometric example for 𝑆-metric spaces.  

Example 2.3 (see [3]) Let 𝑋 = 𝑅2 and 𝑑 be the ordinary metric on 𝑋. Put 

                                  𝑆(𝑥, 𝑦, 𝑧) =  𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, that is, 𝑆 is the perimeter of the triangle given by 𝑥, 𝑦, 𝑧. Then 𝑆 

is an 𝑆-metric on 𝑋. 

Example 2.4 Let 𝑋 = [1, +∞) . Define 𝑆: 𝑋3 → [0, +∞) by  

                              𝑆(𝑦1, 𝑦2, 𝑦3) = ∑3
𝑖=1 ∑𝑖<𝑗 |𝑦𝑖 − 𝑦𝑗| 

for all 𝑦𝑖 ∈ 𝑋, 𝑖 = 1,2,3. 

Lemma 2.5 (see [3]) Let (𝑋, 𝑆) be an S-metric space. Then for all 𝑥, 𝑦 ∈ 𝑋, 
                                                 𝑆(𝑥, 𝑥, 𝑦) = 𝑆(𝑦, 𝑦, 𝑥).  

Lemma 2.6 Let (𝑋, 𝑆) be an 𝑆-metric space. Then for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, 
                                 𝑆(𝑥, 𝑥, 𝑧) ≤ 2𝑆(𝑥, 𝑥, 𝑦) + 𝑆(𝑦, 𝑦, 𝑧) and 

                                    𝑆(𝑥, 𝑥, 𝑧) ≤ 2𝑆(𝑥, 𝑥, 𝑦) + 𝑆(𝑧, 𝑧, 𝑦). 

Definition 2.7 (see [3]) Let 𝑋 be an 𝑆-metric space. 

(i). A sequence {𝑦𝑛} converges to 𝑦 if and only if 𝑆(𝑦𝑛, 𝑦𝑛, 𝑦)  = 0. That 

is for each 𝜖 > 0  there exists 𝑛0 ∈ 𝑁  such that for all 𝑛 ≥
𝑛0, 𝑆(𝑦𝑛, 𝑦𝑛, 𝑦) < 𝜖 and we denote this by 

                                               𝑦𝑛  = 𝑦. 

(ii).  A sequence {𝑦𝑛}  is called a Cauchy if 𝑆(𝑦𝑛, 𝑦𝑛, 𝑦𝑚)  = 0. That is, for 

each  𝜖 > 0  there exists 𝑛0 ∈ 𝑁  such that for all 𝑛, 𝑚 ≥
𝑛0, 𝑆(𝑦𝑛, 𝑦𝑛, 𝑦𝑚) < 𝜖. 

(iii). 𝑋 is called complete if every Cauchy sequence in 𝑋 is a convergent. 

 From (see [3]), we have the following. 

Example 2.8 

(a). Let 𝑅 be the real line. Then 

𝑆(𝑥, 𝑦, 𝑧) = |𝑥 − 𝑧| + |𝑦 − 𝑧| 
for all 𝑥, 𝑦, 𝑧 ∈ 𝑅, is an 𝑆-metric on 𝑅. This 𝑆-metric is called the usual 𝑆-

metric on 𝑅. Furthermore, the usual 𝑆-metric space 𝑅 is complete. 

(b). Let 𝑋 be a non-empty set of 𝑅. Then 

𝑆(𝑥, 𝑦, 𝑧) = |𝑥 − 𝑧| + |𝑦 − 𝑧| 
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋, is an S-metric on 𝑋. If 𝑋 is a closed subset of the usual 

metric space 𝑅, then the S-metric space 𝑋 is complete. 

Lemma 2.9 (see [3]) Let (𝑋, 𝑆) be an S-metric space. If the sequence {𝑦𝑛} in 𝑋 

converges to 𝑦, then 𝑦 is unique. 
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Lemma 2.10 (see [3]) Let (𝑋, 𝑆) be an S-metric space. If  

                                    𝑦𝑛  = 𝑦 and  𝑧𝑛  = 𝑧. 
Then    𝑆(𝑦𝑛, 𝑦𝑛, 𝑧𝑛)  = 𝑆(𝑦, 𝑦, 𝑧). 

Remark 2.11 It is easy to see that every 𝐷∗-metric is S-metric, but in general the 

converse is not true, see the following example. 

Example 2.12 Let 𝑋 = 𝑅𝑛 and ‖ . ‖ a norm on 𝑋, then 

𝑆(𝑥, 𝑦, 𝑧) = ‖𝑦 + 𝑧 − 2𝑥‖ + ‖𝑦 − 𝑧‖ 

is S-metric on 𝑋, but it is not 𝐷∗-metric because it is not symmetric. 

 The following lemma shows that every metric space is an S-metric space. 

Lemma 2.13 Let (𝑋, 𝑑) be a metric space. Then we have 

(1). 𝑆𝑑(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 is an S-metric on 𝑋. 

(2). 𝑥𝑛  = 𝑥 in (𝑋, 𝑑) if and only if 𝑥𝑛  = 𝑥 in (𝑋, 𝑆𝑑). 

(3). {𝑥𝑛}𝑛=1
∞  is Cauchy in (𝑋, 𝑑) if and only if {𝑥𝑛}𝑛=1

∞  is Cauchy in (𝑋, 𝑆𝑑). 

(4). (𝑋, 𝑑) is complete if and only if (𝑋, 𝑆𝑑) is complete. 
 

Example 2.14 Let 𝑋 = 𝑅 and let 

𝑆(𝑥, 𝑦, 𝑧) = |𝑦 + 𝑧 − 2𝑥| + |𝑦 − 𝑧| 
for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. By ([3]), (𝑋, 𝑆) is an S-metric space.  Dung et al. [15] proved 

that there does not exist any metric 𝑑 such that 

𝑆(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Indeed, suppose to the contrary that there exists a metric 𝑑 with 

𝑆(𝑥, 𝑦, 𝑧) = 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧) 

 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. Then 

                                      𝑑(𝑥, 𝑧) =
1

2
𝑆(𝑥, 𝑥, 𝑧) = 2|𝑥 − 𝑧| and  

𝑑(𝑥, 𝑦) =
1

2
𝑆(𝑥, 𝑦, 𝑦) = 2|𝑥 − 𝑦| 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. It is a contradiction. 

 In 2012, Sedghi et al. [30] asserted that an S-metric is a generalization of a 

G-metric, that is, every G-metric is an S-metric, see [30, Remarks 1.3] and [30, 

Remarks 2.2]. The Example 2.1 and Example 2.2 of Dung et al.  shows that this 

assertion is not correct. Moreover, the class of all S-metrics and the class of all G-

metrics are distinct. 
  

Definition 2.15 (see [13]) Let (𝑋, ≼)  be a partially ordered set and let 𝑇: 𝑋 → 𝑋 be 

a mapping. Then  

1. elements 𝑦, 𝑧 ∈ 𝑋 are comparable, if 𝑦 ⪯ 𝑧 or 𝑧 ⪯ 𝑦 holds; 

2. a non-empty set 𝑋 is called well ordered set, if every two elements of it 

are comparable; 

3. 𝑇 is said to be monotone non-decreasing w.r.t. ⪯, if for all 𝑦, 𝑧 ∈ 𝑋, 𝑦 ⪯
𝑧 implies 𝑇𝑦 ⪯ 𝑇𝑧; 

4. 𝑇 is said to be monotone non-increasing w.r.t. ⪯, if for all 𝑦, 𝑧 ∈ 𝑋, 𝑦 ⪯
𝑧 implies 𝑇𝑦 ⪰  𝑇𝑧. 
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3. Main Results 

 First, we introduce following definitions. 

Definition 3.1 The triple (𝑋, 𝑆, ≼) is called partially ordered 𝑆-metric spaces if 

(𝑋, ≼) could be a partial ordered set and (𝑋, 𝑆) be a 𝑆-metric space. 

Definition 3.2 If 𝑋 is complete 𝑆-metric, then (𝑋, 𝑆, ≼) is called complete partially 

ordered metric space. 

Definition 3.3 A partially ordered 𝑆-metric space (𝑋, 𝑆, ≼) is called an ordered 

complete (OC), if for each convergent sequence {𝑦𝑘} ⊂ 𝑋 , the subsequent 

condition holds: either 

● if {𝑦𝑘} ⊂ 𝑋 is a non-increasing sequence such that 𝑦𝑘 → 𝑦 ∈ 𝑋, then 

𝑦𝑘 ≼ 𝑦, for all 𝑘 ∈ 𝑁, that is, 𝑦 =𝑖𝑛𝑓 𝑖𝑛𝑓 {𝑦𝑘} , or 

● if {𝑦𝑘} ⊂ 𝑋 is a non-decreasing sequence such that 𝑦𝑘 → 𝑦 implies that 

𝑦𝑘 ≼ 𝑦, for all 𝑘 ∈ 𝑁, that is, 𝑦 =𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑦𝑘} .  
 The following is our first main outcome. 

Theorem 3.4 Let (𝑋, 𝑆, ≼) be a complete partially ordred 𝑆-metric space. Suppose 

a self map 𝑇  on 𝑋  is continuous, non-decreasing and satisfies the contraction 

condition  

          𝑆(𝑇𝑦, 𝑇𝑦, 𝑇𝑧) ≤ 𝑎
𝑆(𝑦,𝑦,𝑇𝑦)𝑆(𝑧,𝑧,𝑇𝑧)

𝑆(𝑦,𝑦,𝑧)
+ 𝑏𝑆(𝑦, 𝑦, 𝑇𝑦) + 𝑐𝑆(𝑧, 𝑧, 𝑇𝑧) 

                                 +𝑑𝑆(𝑦, 𝑦, 𝑧)                                                                    (1.3.1) 

for any 𝑦 ≠ 𝑧 ∈ 𝑋 with 𝑦 ≼ 𝑧, where 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1) with 

                                               0 ≤ 𝑎 + 𝑏 + 𝑐 + 𝑑 < 1.  

If 𝑦0 ≼ 𝑇𝑦0 for certain 𝑦0 ∈ 𝑋, then 𝑇 has a fixed point.  

Proof Let 𝑦0 ∈ 𝑋  be arbitrary and define a sequence {𝑦𝑘}  by                                                             

𝑦𝑘+1 = 𝑇𝑦𝑘 . If 𝑦𝑘0+1 = 𝑦𝑘0
 for certain 𝑘0 ∈ 𝑁,  then 𝑦𝑘0

 is a fixed point 𝑇 . 

Assume that 𝑦𝑘+1 ≠ 𝑦𝑘  for each 𝑘. But 𝑦0 ≼ 𝑇𝑦0 and 𝑇 is non-decreasing as by 

induction we obtain that 

                                    𝑦0 ≼ 𝑦1 ≼ 𝑦2 ≼ ⋯ ≼ 𝑦𝑘 ≼ 𝑦𝑘+1 ≤ ⋯                          (1.3.2)  

By (1), we have 

     𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘) = 𝑆(𝑇𝑦𝑘, 𝑇𝑦𝑘, 𝑇𝑦𝑘−1) ≤ 𝑎
𝑆(𝑦𝑘,𝑦𝑘,𝑇𝑦𝑘)𝑆(𝑦𝑘−1,𝑦𝑘−1,𝑇𝑦𝑘−1)

𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘−1)
 

                           +𝑏𝑆(𝑦𝑘, 𝑦𝑘, 𝑇𝑦𝑘) + 𝑐𝑆(𝑦𝑘−1, 𝑦𝑘−1, 𝑇𝑦𝑘−1) +𝑑𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘−1)                                                                                                

     = 𝑎
𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘+1)𝑆(𝑦𝑘−1,𝑦𝑘−1,𝑦𝑘)

𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘−1)
 

                             +𝑏𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 𝑐𝑆(𝑦𝑘−1, 𝑦𝑘−1, 𝑦𝑘) +𝑑𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘−1)  

                             = 𝑎
𝑆(𝑦𝑘+1,𝑦𝑘+1,𝑦𝑘)𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘−1)

𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘−1)
 

                         +𝑏𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘) + 𝑐𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘−1) + 𝑑𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘−1) 

                       = (𝑎 + 𝑏)𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘) + (𝑐 + 𝑑)𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘−1) 

which infer that 

                         𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘) ≤ (
𝑐+𝑑

1—𝑎−𝑏
) 𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘−1) 

                                                      ≤ (
𝑐+𝑑

1—𝑎−𝑏
)

𝑘

𝑆(𝑦1, 𝑦1, 𝑦0) ≤ ⋯                     (1.3.3) 
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For 𝑚, 𝑘 ∈ 𝑁 with 𝑚 > 𝑘, by repeated use of (S3), we have  

             𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑚) ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 𝑆(𝑦𝑚, 𝑦𝑚, 𝑦𝑘+1) 

                                    ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑚) 

                 ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 2𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘+2) + 𝑆(𝑦𝑚, 𝑦𝑚, 𝑦𝑘+2) 

               ≤ 2𝑆(𝑦𝑘 , 𝑦𝑘, 𝑦𝑘+1) + 2𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘+2)  +𝑆(𝑦𝑘+2, 𝑦𝑘+2, 𝑆𝑦𝑚) 

                                ≤ 2𝑆(𝑦𝑘, 𝑦𝑘, 𝑦𝑘+1) + 2𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘+2) 

                                  +2𝑆(𝑦𝑘+2, 𝑦𝑘+2, 𝑦𝑘+3) + 𝑆(𝑦𝑚, 𝑦𝑚, 𝑦𝑘+3) 

               ≤ 2𝑆(𝑦𝑘 , 𝑦𝑘, 𝑦𝑘+1) + 2𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑦𝑘+2) + 2𝑆(𝑦𝑘+2, 𝑦𝑘+2, 𝑦𝑘+3) 

       +2𝑆(𝑦𝑘+3, 𝑦𝑘+3, 𝑦𝑘+4) + ⋯ + 2𝑆(𝑦𝑚−2, 𝑦𝑚−2, 𝑦𝑚−1) + 𝑆(𝑦𝑚−1, 𝑦𝑚−1, 𝑦𝑚) 

         ≤ 2[𝜆𝑘 + 𝜆𝑘+1 + ⋯ + 𝜆𝑚−2]𝑆(𝑦0, 𝑦0, 𝑦1)+𝜆𝑚−1𝑆(𝑦0, 𝑦0, 𝑦1) 

           = 2𝜆𝑘[1 + 𝜆 + 𝜆2 + ⋯ + 𝜆𝑚−𝑘−2]𝑆(𝑦0, 𝑦0, 𝑦1) +  𝜆𝑚−𝑘−1𝑆(𝑦0, 𝑦0, 𝑦1) 

                                ≤ 2𝜆𝑘[1 + 𝜆 + 𝜆2 + 𝜆3 + ⋯ ]𝑆(𝑦0, 𝑦0, 𝑦1) 

                                ≤ 2
𝜆𝑘

1−𝜆
𝑆(𝑦0, 𝑦0, 𝑦1)                                                           (1.3.4) 

where 𝜆 =
𝑐+𝑑

1—𝑎−𝑏
. As 𝑘, 𝑚 → ∞ in inequality (1.3.6), we obtain 𝑆(𝑦𝑘, 𝑦𝑘 , 𝑦𝑚)  =

0. This shows that {𝑦𝑘} ⊂ 𝑋 is a Cauchy sequence and then 𝑦𝑘 → 𝑦 ∈ 𝑋 by its 

completeness. Besides, the continuity of 𝑇 implies that 

𝑇𝑦 = 𝑇(𝑦𝑘 ) = 𝑇𝑦𝑘  = 𝑦𝑘+1  = 𝑦 

Therefore, 𝑦 is a fixed point of 𝑇 in 𝑋 .  

 Extracting the continuity of a map 𝑇 in Theorem 1 of 1.2.3, we have the 

below result.  

Theorem 3.5 If 𝑋 has an ordered complete (OC) property in Theorem 1 of 1.2.3, 

then a non-decreasing mapping 𝑇 has a fixed point in 𝑋. 

Proof We only claim that 𝑇𝑦 = 𝑦. By an ordered complete metrical property of 𝑋, 

we have 𝑦 =𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑦𝑘} , for 𝑘 ∈ 𝑁  as 𝑦𝑘 →  𝑦 ∈  𝑋  is a non-decreasing 

sequence. The non-decreasing property of a map 𝑇  implies that 𝑇𝑦𝑘 ≼ 𝑇𝑦  or, 

equivalently, 𝑦𝑘+1 ≼ 𝑇𝑦, for 𝑘 ≥ 0. Since, 𝑦0 ≺ 𝑦1 ≼  𝑇𝑦 and 𝑦 =𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑦𝑘}  
as a result, we get 𝑦 ≼  𝑇𝑦. Assume 𝑦 ≺ 𝑇𝑦. From Theorem 1 of 1.2.3, there is a 

non-decreasing sequence 𝑇𝑘𝑦 ∈  𝑋  with 𝑇𝑘𝑦 = 𝜀 ∈ 𝑋 . Again, by an ordered 

complete (OC) property of 𝑋 , we obtain that 𝜀 =𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑇𝑘𝑦} . Furthermore, 

𝑦𝑘 = 𝑇𝑘𝑦0 ≼ 𝑇𝑘𝑦 , for 𝑘 ≥ 1 as a result, 𝑦𝑘 ≺ 𝑇𝑘𝑦, for 𝑘 ≥ 1, since 𝑦𝑘 ≼ 𝑦 ≺
𝑇𝑦 ≼ 𝑇𝑘𝑦, for 𝑘 ≥ 1 whereas 𝑦𝑘 and 𝑇𝑘𝑦, for 𝑘 ≥ 1 are distinct and comparable.  

Now we have the discussion below in the subsequent cases. 

Case-1 If 𝑆(𝑦𝑘, 𝑦𝑘 , 𝑇𝑘𝑦) ≠ 0, then (1) becomes, 

   𝑆(𝑦𝑘+1, 𝑦𝑘+1, 𝑇𝑘+1𝑦) = 𝑆(𝑇𝑦𝑘, 𝑇𝑦𝑘, 𝑇(𝑇𝑘𝑦)) 

                                      ≤ 𝑎
𝑆(𝑦𝑘,𝑦𝑘,𝑇𝑦𝑘)𝑆(𝑇𝑘𝑦,𝑇𝑘𝑦,𝑇𝑘+1𝑦)

𝑆(𝑦𝑘,𝑦𝑘,𝑇𝑘𝑦)
 

              +𝑏𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑇𝑦𝑘) + 𝑐𝑆(𝑇𝑘𝑦, 𝑇𝑘𝑦, 𝑇𝑘+1𝑦)  +𝑑𝑆(𝑦𝑘, 𝑦𝑘 , 𝑇𝑘𝑦)  

                                      = 𝑎
𝑆(𝑦𝑘,𝑦𝑘,𝑦𝑘+1)𝑆(𝑇𝑘𝑦,𝑇𝑘𝑦,𝑇𝑘+1𝑦)

𝑆(𝑦𝑘,𝑦𝑘,𝑇𝑘𝑦)
 

                                      +𝑏𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑦𝑘+1) + 𝑐𝑆(𝑇𝑘𝑦, 𝑇𝑘𝑦, 𝑇𝑘+1𝑦) 

                                       +𝑑𝑆(𝑦𝑘 , 𝑦𝑘 , 𝑇𝑘𝑦)                                                      (1.3.5)      
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As 𝑘 → ∞ in (1.3.5), we get  

                      𝑆(𝑦, 𝑦, 𝜀) ≤ 𝑑𝑆(𝑦, 𝑦, 𝜀) 

as a result, we have, 𝑆(𝑦, 𝑦, 𝜀) = 0 . Hence 𝑦 = 𝜀 . In particular, 𝑦 = 𝜀 =
𝑠𝑢𝑝 𝑠𝑢𝑝 {𝑇𝑘𝑦}  in consequence, we get 𝑇𝑦 ≼ 𝑦, a contradiction. Therefore,𝑇𝑦 =
𝑦. 

Case-2 If 𝑆(𝑦𝑘, 𝑦𝑘 , 𝑇𝑘𝑦) = 0,  then, 𝑆(𝑦, 𝑦, 𝜀) = 0  as 𝑘 → ∞ . By following the 

similar argument in Case 1, we get 𝑇𝑦 = 𝑦. 

Corollary 1 Let (𝑋, 𝑆, ≼) be a complete partially ordred 𝑆-metric space. Suppose 

a self map 𝑇  on 𝑋  is continuous, non-decreasing and satisfies the contraction 

condition  

            𝑆(𝑇𝑦, 𝑇𝑦, 𝑇𝑧) ≤ 𝑎
𝑆(𝑦,𝑦,𝑇𝑦)𝑆(𝑧,𝑧,𝑇𝑧)

𝑆(𝑦,𝑦,𝑧)
+ 𝑏[𝑆(𝑦, 𝑦, 𝑇𝑦) + 𝑆(𝑧, 𝑧, 𝑇𝑧)] 

                                   +𝑑𝑆(𝑦, 𝑦, 𝑧)                                                                   (1.3.6) 

for any 𝑦 ≠ 𝑧 ∈ 𝑋 with 𝑦 ≼ 𝑧, where 𝑎, 𝑏, 𝑐 ∈ [0,1) with 0 ≤ 𝑎 + 2𝑏 + 𝑑 < 1. If 

𝑦0 ≼ 𝑇𝑦0 for certain 𝑦0 ∈ 𝑋, then 𝑇 has a fixed point.  

 Proof. It follows by 𝑏 = 𝑐 in Theorem 1 of 1.2.3. 

Corollary 2 Let (𝑋, 𝑆, ≼) be a complete partially ordred 𝑆-metric space. Suppose 

a self map 𝑇  on 𝑋  is continuous, non-decreasing and satisfies the contraction 

condition  

                           𝑆(𝑇𝑦, 𝑇𝑦, 𝑇𝑧) ≤ 𝑎
𝑆(𝑦,𝑦,𝑇𝑦)𝑆(𝑧,𝑧,𝑇𝑧)

𝑆(𝑦,𝑦,𝑧)
+ 𝑑𝑆(𝑦, 𝑦, 𝑧)                (1.3.7) 

for any 𝑦 ≠ 𝑧 ∈ 𝑋  with 𝑦 ≼ 𝑧,  where 𝐿 ≥ 0,  and 𝑎, 𝑑 ∈ [0,1)  with  0 ≤ 𝑎 + 𝑑 <
1. If 𝑦0 ≼ 𝑇𝑦0 for certain 𝑦0 ∈ 𝑋, then 𝑇 has a fixed point.  

 Proof. Taking 𝑏 = 𝑐 = 0  in Theorem 1 of 1.2.3, we obtain the desired 

result. We conclude with an example.  

Example 3.6 Let (𝑅, 𝑆, ≼)  be a totally ordered complete 𝑆-metric space with 𝑆-

metric defined as in Example 8 (a) of 1.2.2. Let 𝑇: 𝑅 → 𝑅 be a map defined by 

𝑇(𝑦) =
3𝑦+24𝑛−3

24𝑛
 for all 𝑛 ≥  1 . It is evident that 𝑇  is continuous and non-

decreasing in 𝑅 and 𝑦0 = 0 ∈ 𝑅 such that 𝑦0 = 0 ≼ 𝑇𝑦0. Taking 𝑎 = 0, 𝑏 = 𝑐 =

0, 𝑑 =
1

𝑛
. For 𝑦 ≼ 𝑧, we have  

                      𝑆(𝑇𝑦, 𝑇𝑦, 𝑇𝑧) = 2|𝑇𝑦 − 𝑇𝑧| 

                                            = 2 |
3𝑦+24𝑛−3

24𝑛
−

3𝑧+24𝑛−3

24𝑛
| 

                                            = 2 |
3(𝑦−𝑧)

24𝑛
| =

1

𝑛
|

𝑦−𝑧

4
| 

                                            ≤
1

𝑛
|𝑦 − 𝑧| =

1

𝑛
𝑆(𝑦, 𝑦, 𝑧) 

                                            ≤ 𝑎
𝑆(𝑦,𝑦,𝑇𝑦)𝑆(𝑧,𝑧,𝑇𝑧)

𝑆(𝑦,𝑦,𝑧)
+ 𝑏𝑆(𝑦, 𝑦, 𝑇𝑦) + 𝑐𝑆(𝑧, 𝑧, 𝑇𝑧) 

                                            +𝑑𝑆(𝑦, 𝑦, 𝑧) 

holds for every 𝑦, 𝑧 ∈ 𝑅. For 𝐿 ≥ 0 and 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1) such that 0 ≤ 𝑎 + 𝑏 +

𝑐 + 𝑑 < 1, in particular, if we take 𝑎 = 0, 𝑏 = 𝑐 = 0, 𝑑 =
1

𝑛
, then 0 ≤ 𝑎 + 𝑏 + 𝑐 +

𝑑 < 1 and 1 ∈ 𝑅 is a fixed point of 𝑇 as all the conditions of Theorem 1 of 1.2.3 

are satisfied. 
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Abstract 

            In this manuscript, we present some unique fixed-point theorems satisfying 

expansive type conditions by considering surjective self-mapping in the context of 

parametric metric space.  
 

1. INTRODUCTION:  

           The concept of metric spaces has been generalized in many directions. The 

notion of a b-metric space was studied by Czerwik in [2-3] and a lot of fixed-point 

results for single-valued and multi-valued mappings by many authors have been 

obtained in (ordered) b-metric spaces (see, e.g., [4]-[5]). The concept of fuzzy set 

was introduced by Zadeh [9] in 1965. In 1975, Kramosil and Michalek [7] 

introduced the notion of fuzzy metric space, which can be regarded as a 

generalization of the statistical (probabilistic) metric space. This work has provided 

an important basis for the construction of fixed-point theory in fuzzy metric spaces. 

In 2004, Park introduced the notion of intuitionistic fuzzy metric space [8].  

 

2. DEFINITIONS AND PRELIMINARIES  

Throughout this paper  ℝ  and  ℝ + will represents the set of real numbers and 

nonnegative real numbers, respectively.  

In 2014, Hussain et al. [6] defined and studied the concept of parametric metric 

space as follows. 

Definition 2.1 Let X be a nonempty set and 𝒫 ∶  X × X × (0, +∞)  → [0, +∞) be 

a function. We say 𝒫 is a parametric metric on X if, 

(1) 𝒫(x, y, t)  =  0 for all t >  0 if and only if x =  y; 

(2) 𝒫(x, y, t) = 𝒫(y, x, t)  for all t >  0; 

(3) 𝒫(x, y, t) ≤ 𝒫(x, z, t) + 𝒫(z, y, t) for all x, y, z ∈ X and all t >  0: 

and one says the pair (X, 𝒫) is a parametric metric space. 

The following definitions are required in the sequel which can be found in [1]. 

Definition 2.2 Let {xn}n=1
∞  be a sequence in a parametric metric space (X, 𝒫). 

1. {xn}n=1
∞  is said to be convergent to x ∈ X, written as lim

n→∞
xn = x, for all t >

0, if lim
n→∞

𝒫(xn, x, t) = 0. 

2. {xn}n=1
∞  is said to be a Cauchy sequence in X  if for all t > 0,  if 

lim
n,m→∞

𝒫(xn, xm, t) = 0. 
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3. (X, 𝒫) is said to be complete if every Cauchy sequence is a convergent 

sequence. 

Definition 2.3 Let (X, 𝒫) be a parametric metric space and T: X → X be a mapping. 

We say T is a continuous mapping at x in X, if for any sequence {xn}n=1
∞  in X such 

that lim
n→∞

xn = x, then lim
n→∞

Txn = Tx. 

Example 2.4 Let X denote the set of all functionsf ∶ (0, +∞) → ℝ. Define 𝒫 ∶
 X × X × (0, +∞)  → [0, +∞)  by 𝒫(f, g, t) = |f(t) − g(t)| ∀  f, g ∈ X  and all  t >
0. Then 𝒫 is a parametric metric on X and the pair (X, 𝒫) is a parametric metric 

space. 
 

3. FIXED POINT RESULTS IN PARAMETRIC METRIC SPACES: 

In this section, we prove some unique fixed-point theorems satisfying expansive 

condition by considering surjective self-mapping in the context of parametric 

metric space. 

We begin with a simple but a useful lemma. 

Lemma 3.1 Let {xn}n=1
∞  be a sequence in a parametric metric space (X, 𝒫) such 

that 

(3.1.1)           𝒫(xn, xn+1, t) ≤  λn𝒫(x0, x1, t)  

where λ ∈  [0, 1) and n =  1, 2, . . .. Then {xn}n=1
∞  is a Cauchy sequence in (X, 𝒫). 

Proof Let m > n ≥ 1. It follows that 

 (3.1.2)   𝒫(xn, xm, t) ≤ 𝒫(xn, xn+1, t) + 𝒫(xn+1, xn+2, t) + ⋯ + 𝒫(xm−1, xm, t) 

                                    ≤ (λn + λn+1 + ⋯ + λm−1) 𝒫(x0, x1, t) 

                                    ≤
λn

1−λ
 𝒫(x0, x1, t) 

for all t > 0. Since λ < 1. Assume that  𝒫(x0, x1, t) > 0. By taking limit as m, n →
+∞ in above inequality we get 

(3.1.3)             lim
n,m→∞

𝒫(xn, xm, t) = 0. 

Therefore, {xn}n=1
∞  is a Cauchy sequence in X . Also, if 𝒫(x0, x1, t) = 0,  then 

𝒫(xn, xm, t) = 0 for all m >  n and hence {xn}n=1
∞   is a Cauchy sequence in X. 

Now, our first main results as follows. 

Theorem 3.2 Let (X, 𝒫) be a complete parametric metric space and T: X → X be a 

surjection. Suppose that there exist a, b ≥ 0 with  a + 2b > 1 such that  

(3.2.1)                  𝒫(Tx, Ty, t) ≥ a 𝒫(x, y, t) + b [𝒫(x, Tx, t) + 𝒫(y, Ty, t)] 
∀ x, y ∈ X with x ≠ y and all t > 0. Then T has a fixed point in X. 

Proof Under the assumption. It is clear that T is injective. Let G be the inverse 

mapping of  T . Choose   x0 ∈ X , set   x1 = G(x0), x2 = G(x1) =
G2(x0), … … … , xn+1 = G(xn) = Gn+1(x0) … … .. . Without loss of generality, we 

assume that xn−1 ≠ xn for all n = 1,2, ….(otherwise, if there exists some n0 such 

that xn0−1 = xn0
, then xn0

 is a fixed point of T). It follows that from condition 

(4.3.2.1) 

(3.2.2)       𝒫(xn−1, xn, t) =  𝒫(TT−1xn−1, TT−1xn, t) 
   ≥ a 𝒫(T−1xn−1, T−1xn, t) + b 𝒫(T−1xn−1, TT−1xn−1, t) + b 𝒫(T−1xn, TT−1xn, t) 
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            = a 𝒫(Gxn−1, Gxn, t) + b 𝒫(Gxn−1, xn−1, t) + b 𝒫(Gxn, xn, t) 

            = a 𝒫(xn, xn+1, t) + b 𝒫(xn, xn−1, t) + b𝒫(xn+1, xn, t)  

Hence  

(3.2.3)                     (1 − b) 𝒫(xn−1, xn, t) ≥ (a + b) 𝒫(xn+1, xn, t) 

If a = 0, then b > 0. The above inequality implies that a negative number is greater 

then or equal to zero. This is impossible. So, a ≠ 0 and(1 − 2b) > 0. Therefore, 

(3.2.4)                                 𝒫(xn+1, xn, t) ≤ k 𝒫(xn−1, xn, t)  

where k =
1−b

a+b
< 1for all n ∈ ℕ ∪ {0} and t > 0. Repeating (4.3.2.4) n-times, we 

get 

(3.2.5)        𝒫(xn+1, xn, t) ≤ kn 𝒫(x0, x, t)  
for all t > 0. By Lemma 4.3.1,{xn}n=1

∞  is a Cauchy sequence. Since (X, 𝒫) is a 

complete parametric metric space, there exists x⋆ ∈ X such that xn → x⋆ as n → ∞. 

Now since T is surjective map. So there exists a point y in X such that x⋆ = Ty. 

Consider 
(3.2.6)        𝒫(xn, x⋆, t) = 𝒫(Txn+1, Ty, t) 

                                 ≥ a 𝒫(xn+1, y, t) + b  𝒫(xn+1, Txn+1, t) + b 𝒫(y, Ty, t) 

                                 =  a 𝒫(xn+1, y, t) + b 𝒫(xn+1, xn, t) + b𝒫(y, x⋆, t) 

which implies that as n → +∞  
(3.2.7)                          0 ≥ (a + b) 𝒫(y, x⋆, t) 

Hence y = x⋆. This gives that x⋆ is a fixed point of T. This completes the proof. 

Now we give an example illustrating Theorem 4.3.2. 

Example 3.3 Let X = [0, +∞) be endowed with parametric metric, 

                                                     𝒫(x, y, t) = {
t max{x, y},      x ≠ y
0,                         x = y

 

for all x, y ∈ X and t > 0. Define T: X → X by Tx =
5

2
x. Obviously, T is continuous 

surjective map on X. So, for a = 4, b = −2 all the conditions of Theorem 4.3.2 are 

satisfied. Therefore  x⋆ = 0 is the unique fixed point of T. 

Setting b = 0 and a = k in Theorem 4.3.2, we can obtain the following result. 

Corollary 3.4 Let (X, 𝒫) be a complete parametric metric space and T: X → X be a 

surjection. Suppose that there exists a constant  k > 1 such that  

(3.4.1)                                    𝒫(Tx, Ty, t) ≥ k𝒫(x, y, t) 

∀ x, y ∈ X and all t > 0. Then T has a unique fixed point in X. 

Proof From Theorem 3.2, it follows that T has a fixed point x⋆ in X by setting b =
0 and a = k in condition (3.4).  

Uniqueness. Suppose that  x⋆ ≠ y⋆  is also another fixed point of  T, then from 

condition (3.4.1), we obtain 
(3.4.2)                        𝒫(x⋆, y⋆, t) = 𝒫(Tx⋆, Ty⋆, t) 

                                                         ≥ k𝒫(x⋆, y⋆, t) 

which implies  𝒫(x⋆, y⋆, t) = 0, that is x⋆ = y⋆. This completes the proof. 

Corollary 3.5 Let (X, 𝒫) be a complete parametric metric space and T: X → X be a 

surjection. Suppose that there exists a positive integer n and a real number k > 1 

such that  

43 



INSPIRE                ISSN: 2455-6742 
Vol. 10, Nov. 2024 & May 2025, No. 01 & 02      41-44 
 

 (3.5.1)            𝒫(Tnx, Tny, t) ≥ k 𝒫(x, y, t)  

∀ x, y ∈ X and all t > 0. Then T has a unique fixed point in X. 

Proof From Corollary 3.4, Tn has a fixed point  x⋆.  But  Tn(Tx⋆) = T(Tnx⋆) =
Tx⋆ , So Tx⋆ is also a fixed point of Tn. Hence Tx⋆ = x⋆, x⋆ is a fixed point of T. 

Since the fixed point of T is also fixed point of  Tn , the fixed point of T is unique. 
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1. Introduction 

     Abbas M. and Rhoades B. E. [2] extend the fixed point theory in the context of 

cone metric spaces, a concept introduced by Huang and Zhang [6]. Abbas and 

Jungck [1] demonstrated the existence of coincidence and common fixed points for 

mappings that fulfill specific contractive conditions within the setting of cone 

metric spaces. The authors [2] prove new fixed point theorems for certain types of 

contractive mappings in cone metric spaces. Their results do not require the 

assumption of continuity or commutativity of the mappings, which makes their 

theorems more broadly applicable. In this paper we generalize these results by using 

new contractive conditions and these results appear as special cases of our result. 
 

2.Preliminaries 

        Consistent with Abbas M. and Rhoades B.E. [2], the following definitions are 

required in this context. 

Definition 2.1 Let 𝐸 be a real Banach space. A subset 𝑃 of 𝐸 is called a cone if 

and only if: 

    (a) 𝑃 is closed, non empty and 𝑃 ≠ {0}; 

    (b) 𝑎, 𝑏 ∈ 𝑅, 𝑎, 𝑏 ≥ 0, 𝑥, 𝑦 ∈ 𝑃 imply that 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃; 

    (c) 𝑃 ∩ (−𝑃) = {0}. 

Given a cone 𝑃 ⊂ 𝐸, we define a partial ordering ≤ with respect to 𝑃 by 𝑥 ≤ 𝑦 if 

and only if  𝑦 − 𝑥 ∈ 𝑃. A cone 𝑃 is called normal if there is a number 𝐾 > 0 such 

that for all 𝑥, 𝑦 ∈ 𝐸, 

0 ≤ 𝑥 ≤ 𝑦 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 ‖𝑥‖ ≤ 𝐾‖𝑦‖#(2.1)  
The least positive number satisfying the above inequality is called the normal 

constant of 𝑃, while 𝑥 ≪ 𝑦 stands for 𝑦 − 𝑥 ∈ int 𝑃 (interior of 𝑃 ). We shall write 

𝑥 < 𝑦 to indicate that 𝑥 ≪ 𝑦 but 𝑥 ≠ 𝑦. 

Definition 2.2       Let 𝑋 be a nonempty set. Suppose that the mapping 
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𝑑: 𝑋 × 𝑋 → 𝐸 satisfies: 

    (d1) 0 ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦; 

    (d2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; 

    (d3) 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑧, 𝑦) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋. 

Then 𝑑 is called a cone metric on 𝑋 and (𝑋, 𝑑) is called a cone metric space. The 

concept of a cone metric space is more general than that of a metric space. 

Definition 2.3      Let (𝑋, 𝑑) be a cone metric space, {𝑥𝑛} a sequence in 𝑋 and 𝑥 ∈
𝑋. For every    𝑐 ∈ 𝐸 with 0 ≪ 𝑐, we say that {𝑥𝑛} is: 

   (e) a Cauchy sequence if there is an 𝑁 such that, for all 𝑛, 𝑚 > 𝑁, 𝑑(𝑥𝑛, 𝑥𝑚) ≪ 

𝑐; 
   (f) a convergent sequence if there is an 𝑁 such that, for all 𝑛 > 𝑁, 𝑑(𝑥𝑛, 𝑥) ≪ 𝑐 

for some 𝑥 in 𝑋. 

Definition 2.3 A cone metric space 𝑋 is said to be complete if every Cauchy 

sequence in 𝑋 is convergent in 𝑋 i.e. for any sequence  {𝑥𝑛}  in 𝑋,  {𝑥𝑛} 

converges to 𝑥 ∈ 𝑋 if and only if 𝑑(𝑥𝑛, 𝑥) → 0 as 𝑛 → ∞. The limit of a 

convergent sequence is unique provided 𝑃 is a normal cone with normal constant 

𝐾.(see [2] & [6]) 
 

3. Main Result 

Theorem 3.1    Let (𝑋, 𝑑) be a complete cone metric spaces, and 𝑃 a normal cone 

with normal constant 𝐾. Suppose that the mapping 𝑓 and 𝑔 are two self-maps of 𝑋 

satisfying: 

𝑑(𝑓𝑥, 𝑔𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) + 𝛽[𝑑(𝑥, 𝑓𝑥) + 𝑑(𝑦, 𝑔𝑦)] + 𝛾⌊𝑑(𝑥, 𝑔𝑦) + 𝑑(𝑦, 𝑓𝑥)⌋ 

                                            +𝛿
𝑑(𝑦,𝑔𝑦)[1+𝑑(𝑥,𝑓𝑥)]

1+𝑑(𝑥,𝑦)
          … (3.1.1)                                                                                                  

∀ 𝑥, 𝑦 ∈  𝑋, where 𝛼, 𝛽, 𝛾, 𝛿 ≥ 0 and 𝛼 + 2𝛽 + 2𝛾 + 𝛿 < 1. Then 𝑓 and 𝑔 have a 

unique common fixed point in 𝑋. Moreover, any fixed point of 𝑓 is fixed point of 𝑔 

and conversely. 

Proof- Suppose 𝑥0 is an arbitrary point of 𝑋, and define {𝑥𝑛} by 

 𝑥2𝑛+1 = 𝑓𝑥2𝑛       ,           𝑥2𝑛+2 = 𝑔𝑥2𝑛+1, 𝑛 = 0,1, 2 …          

 Now, 

 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) = 𝑑(𝑓𝑥2𝑛, 𝑔𝑥2𝑛+1) 

                            ≤ 𝛼𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝛽[𝑑(𝑥2𝑛, 𝑓𝑥2𝑛) + 𝑑(𝑥2𝑛+1, 𝑔𝑥2𝑛+1)] +
                                        𝛾[𝑑(𝑥2𝑛, 𝑔𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1, 𝑓𝑥2𝑛)] +

𝛿
𝑑(𝑥2𝑛+1,𝑔𝑥2𝑛+1)[1+𝑑(𝑥2𝑛,𝑓𝑥2𝑛)]

1+𝑑(𝑥2𝑛,𝑥2𝑛+1)
 

                            ≤ 𝛼𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝛽[𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)] +
                                     𝛾[𝑑(𝑥2𝑛, 𝑥2𝑛+2) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+1)] + 𝛿 
𝑑(𝑥2𝑛+1,𝑥2𝑛+2)[1+𝑑(𝑥2𝑛,𝑥2𝑛+1)]

1+𝑑(𝑥2𝑛,𝑥2𝑛+1)
 

                            ≤ 𝛼𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝛽[𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)] +
                          𝛾[𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)] + 𝛿𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) 

    𝑑(𝑥2𝑛+1, 𝑥2𝑛+2)  ≤ (𝛼 + 𝛽 + 𝛾) 𝑑(𝑥2𝑛, 𝑥2𝑛+1) + (𝛽 + 𝛾 + 𝛿)𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) 
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     𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) ≤
(𝛼+𝛽+𝛾)

1−(𝛽+𝛾+𝛿)
 𝑑(𝑥2𝑛, 𝑥2𝑛+1) 

     𝑑(𝑥2𝑛+1, 𝑥2𝑛+2) ≤ 𝐶𝑑(𝑥2𝑛, 𝑥2𝑛+1)  

Where, 𝐶 ≤
(𝛼+𝛽+𝛾)

1−(𝛽+𝛾+𝛿)
< 1                          … (3.1.2) 

Similarly, it can be shown that, 

𝑑(𝑥2𝑛+3, 𝑥2𝑛+2) ≤ 𝐶𝑑(𝑥2𝑛+2, 𝑥2𝑛+1) 

Therefore, for all 𝑛 

𝑑(𝑥𝑛+1, 𝑥𝑛+2) ≤ 𝐶𝑑(𝑥𝑛, 𝑥𝑛+1) ≤ ⋯ ≤ 𝐶𝑛+1𝑑(𝑥0, 𝑥1) 

Now, for any 𝑚 > 𝑛 

                             𝑑(𝑥𝑚, 𝑥𝑛) ≤ 𝑑(𝑥𝑛, 𝑥𝑛+1) + 𝑑(𝑥𝑛+1, 𝑥𝑛+2) + ⋯ + 𝑑(𝑥𝑚−1, 𝑥𝑚) 

≤ [𝐶𝑛 + 𝐶𝑛+1 + ⋯ + 𝐶𝑚−1] 𝑑(𝑥0, 𝑥1) 

≤
𝐶𝑛[1 − 𝐶𝑚−𝑛]

1 − 𝐶
 𝑑(𝑥0, 𝑥1) 

                                                         ≤
𝐶𝑛

1−𝐶
  𝑑(𝑥0, 𝑥1) 

From definition (2.1) we have  

                    ‖𝑑(𝑥𝑚, 𝑥𝑛)‖ ≤ 𝐾
𝐶𝑛

1−𝐶
‖𝑑(𝑥0, 𝑥1)‖                                 … (3.1.3) 

Which implies that 𝑑(𝑥𝑚, 𝑥𝑛) → 0 as 𝑛, 𝑚 → ∞.  

Hence {𝑥𝑛} is a Cauchy sequence.  

Since 𝑋 is complete, ∃ a 𝑝 in 𝑋 such that 𝑥𝑛 → 𝑝 as 𝑛 → ∞ now using (3.1.1) 

   𝑑(𝑝, 𝑔𝑝) ≤ 𝑑(𝑝, 𝑥2𝑛+1) + 𝑑(𝑥2𝑛+1, 𝑔𝑝) 

   ≤ 𝑑(𝑝, 𝑥2𝑛+1) + 𝑑(𝑓𝑥2𝑛, 𝑔𝑝)     

              ≤ 𝑑(𝑝, 𝑥2𝑛+1) +  𝛼𝑑(𝑥2𝑛+1, 𝑝) + 𝛽[𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝑑(𝑝, 𝑔𝑝)] +
                                                      𝛾[𝑑(𝑥2𝑛, 𝑔𝑝) + 𝑑(𝑝, 𝑥2𝑛+1)] + 𝛿 
𝑑(𝑝,𝑔𝑝)[1+𝑑(𝑥2𝑛, 𝑥2𝑛+1 )]

1+𝑑(𝑥2𝑛,𝑝)
       

                  ≤ 𝑑(𝑝, 𝑥2𝑛+1) +  𝛼𝑑(𝑥2𝑛+1, 𝑝) + 𝛽[𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝑑(𝑝, 𝑔𝑝)] +
                                                  𝛾[𝑑(𝑥2𝑛, 𝑝) + 𝑑(𝑝, 𝑔𝑝) + 𝑑(𝑝, 𝑥2𝑛+1)] + 𝛿 
𝑑(𝑝,𝑔𝑝)[1+𝑑(𝑥2𝑛, 𝑥2𝑛+1 )]

1+𝑑(𝑥2𝑛,𝑝)
 

                        ≤ 𝑑(𝑝, 𝑔𝑝) ≤
1

1−𝛽−𝛾−𝛿
[𝑑(𝑝, 𝑥2𝑛+1) + 𝛼𝑑(𝑥2𝑛+1, 𝑝) +

𝛽𝑑(𝑥2𝑛, 𝑥2𝑛+1) + 𝛾[𝑑(𝑥2𝑛, 𝑝) + 𝑑(𝑝, 𝑥2𝑛+1)] + 𝛿 
1+𝑑(𝑥2𝑛, 𝑥2𝑛+1 )

1+𝑑(𝑥2𝑛,𝑝)
 ] 

From definition (2.1) 

    ‖𝑑(𝑝, 𝑔𝑝)‖ ≤ 𝐾
1

1−𝛽−𝛾−𝛿
{‖𝑑(𝑝, 𝑥𝑛+1)‖ + 𝛼‖𝑑(𝑥𝑛+1, 𝑝)‖ + 𝛽‖𝑑(𝑥𝑛, 𝑥𝑛+1)‖ 

+ 𝛾‖𝑑(𝑥𝑛, 𝑝)‖ + 𝛾‖𝑑(𝑝, 𝑥𝑛+1)‖ + 𝛿 
1+‖𝑑(𝑥𝑛, 𝑥𝑛+1 )‖

1+‖𝑑(𝑥𝑛,𝑝)‖
 }         … (3.1.4) 

Now right-hand side of the above inequality approaches to 0 as 𝑛 → ∞. 
Hence ‖𝑑(𝑝, 𝑔𝑝)‖ = 0, and 𝑝 = 𝑔𝑝. To prove uniqueness, we have from (3.1.1)  

     𝑑(𝑓𝑝, 𝑝) = 𝑑(𝑓𝑝, 𝑔𝑝) 

                      ≤ 𝛼𝑑(𝑝, 𝑝) + 𝛽[𝑑(𝑝, 𝑓𝑝) + 𝑑(𝑝, 𝑔𝑝)] + 𝛾[𝑑(𝑝, 𝑔𝑝) + 𝑑(𝑝, 𝑓𝑝)]          

                        + 𝛿
𝑑(𝑝,𝑔𝑝)[1+𝑑(𝑝,𝑓𝑝)]

1+𝑑(𝑝,𝑝)
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                               𝑑(𝑓𝑝, 𝑝) ≤ (𝛽 + 𝛾) 𝑑(𝑝, 𝑓𝑝) 

Which, using definition of partial ordering on 𝐸 and properties of cone 𝑃, give 

𝑑(𝑓𝑝, 𝑝) = 0, and 𝑓𝑝 = 𝑝. To prove uniqueness, suppose that if 𝑞 is another 

common fixed point of 𝑓 and 𝑔, then 
            𝑑(𝑝, 𝑞) = 𝑑(𝑓𝑝, 𝑔𝑝) 

                          ≤ 𝛼𝑑(𝑝, 𝑞) + 𝛽[𝑑(𝑝, 𝑓𝑝) + 𝑑(𝑞, 𝑔𝑞)] 

                                +  𝛾[𝑑(𝑝, 𝑔𝑞) + 𝑑(𝑞, 𝑓𝑝)] +  𝛿 
𝑑(𝑞,𝑔𝑞)[1+𝑑(𝑝,𝑓𝑝)]

1+𝑑(𝑝,𝑞)
 

          𝑑(𝑝, 𝑞) ≤ (𝛼 + 2𝛾)𝑑(𝑝, 𝑞) 

Which gives 𝑑(𝑝, 𝑞) = 0 and 𝑞 = 𝑝. 

Hence 𝑓 and 𝑔 have a unique common fixed point in 𝑋. 
Corollary 3.2    Let (𝑋, 𝑑) be a complete cone metric space, and 𝑃 be a normal 

cone with normal constant 𝐾. Suppose that a self-map 𝑓 of 𝑋 satisfies: 
         𝑑(𝑓𝑝𝑥, 𝑓𝑞𝑦) ≤  𝛼𝑑(𝑥, 𝑦) + 𝛽[𝑑(𝑥, 𝑓𝑝𝑥) + 𝑑(𝑦, 𝑓𝑞𝑦)] 

                       +𝛾⌊𝑑(𝑥, 𝑓𝑞𝑦) + 𝑑(𝑦, 𝑓𝑝𝑥)⌋ + 𝛿 
𝑑(𝑦,𝑓𝑞𝑦)[1+𝑑(𝑥,𝑓𝑝𝑥)]

1+𝑑(𝑥,𝑦)
      … (3.2.1) 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽, 𝛾, 𝛿 ≥ 0, 𝛼 + 2𝛽 + 2𝛾 + 𝛿 < 1, and 𝑝 and 𝑞 are fixed 

positive integers. Then 𝑓 has a unique fixed point in 𝑋. 

Proof. Inequality (3.2.1) is obtained from (3.1.1) by setting 𝑓 ≡ 𝑓𝑝 and 𝑔 ≡ 𝑓𝑞. 

Corollary 3.3   Let (𝑋, 𝑑) be a complete cone metric space, and 𝑃 be a normal 

cone with normal constant 𝐾. Suppose that mapping 𝑓: 𝑋 ⟶ 𝑋 satisfies 
     𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) + 𝛽[𝑑(𝑥, 𝑓𝑥) + 𝑑(𝑦, 𝑓𝑦)] + 𝛾⌊𝑑(𝑥, 𝑓𝑦) + 𝑑(𝑦, 𝑓𝑥)⌋ 

                                                    + 𝛿 
𝑑(𝑦,𝑓𝑦)[1+𝑑(𝑥,𝑓𝑥)]

1+𝑑(𝑥,𝑦)
   … (3.3.1) 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛽, 𝛾, 𝛿 ≥ 0 and 𝛼 + 2𝛽 + 2𝛾 + 𝛿 < 1. Then 𝑓 has a 

unique fixed point in 𝑋. 

Proof. Set, 𝑝 = 𝑞 = 1 in Corollary (3.2.1).  

Corollary 3.4    Let (𝑋, 𝑑) be a complete cone metric space, and 𝑃 be a normal 

cone with normal constant 𝐾. Suppose that mapping 𝑓: 𝑋 ⟶ 𝑋 satisfies: 
             𝑑(𝑓𝑥, 𝑓𝑦) ≤  𝑠1𝑑(𝑥, 𝑦) + 𝑠2𝑑(𝑥, 𝑓𝑥) + 𝑠3𝑑(𝑦, 𝑓𝑦) + 𝑠4𝑑(𝑥, 𝑓𝑦) +  

     𝑠5𝑑(𝑦, 𝑓𝑥)  + 𝑠6 
𝑑(𝑦,𝑓𝑦)[1+𝑑(𝑥,𝑓𝑥)]

1+𝑑(𝑥,𝑦)
         … (3.4.1) 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝑠𝑖 ≥ 0 for each 𝑖 ∈ {1,2, … ,5} and ∑5
𝑖=1   𝑠𝑖 < 1. Then 𝑓 

has a unique fixed point in 𝑋. 

Proof. In inequality (3.4.1) interchanging the roles of 𝑥 and 𝑦, and adding the 

new inequality to (3.4.1) yields (3.3.1) with 𝛼 = 𝑠1, 𝛽 =
𝑠2+𝑠3

2
, 𝛾 =

𝑠4+𝑠5

2
, 𝛿 = 𝑠6. 

Corollary 3.5    Let (𝑋, 𝑑) be a complete cone metric space, and 𝑃 be a normal 

cone with normal constant 𝐾. Suppose mapping 𝑓: 𝑋 ⟶ 𝑋 satisfies: 

   𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) + 𝛿⌊
𝑑(𝑦, 𝑓𝑦)[1 + 𝑑(𝑥, 𝑓𝑥)]

1 + 𝑑(𝑥, 𝑦)
⌋                                 … (3.5.1)  

for all 𝑥, 𝑦 ∈ 𝑋, where, 𝛼, 𝛿 ≥ 0 and 𝛼 + 𝛿 < 1. Then 𝑓 has a unique fixed point 

in 𝑋.  

Corollary 3.6  Let (𝑋, 𝑑) be a complete cone metric space, and 𝑃 be a normal cone 

with normal constant 𝐾. Suppose that mapping 𝑓: 𝑋 ⟶ 𝑋 satisfies: 
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𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛽[𝑑(𝑥, 𝑓𝑥) + 𝑑(𝑦, 𝑓𝑦)]
+ 𝛾[𝑑(𝑥, 𝑓𝑦) + 𝑑(𝑦, 𝑓𝑥)]                        … (3.6.1) 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛽, 𝛾 ≥ 0 and  𝛽 + 𝛾 <
1

2
 . Then 𝑓 has a unique fixed point 

in 𝑋. 

Corollary 3.7    Let (𝑋, 𝑑) be a complete cone metric space, and 𝑃 be a normal 

cone with normal constant 𝐾. Suppose mapping 𝑓: 𝑋 ⟶ 𝑋 satisfies: 

 𝑑(𝑓𝑥, 𝑓𝑦) ≤ 𝛼𝑑(𝑥, 𝑦) +  𝛾[𝑑(𝑥, 𝑓𝑦) + 𝑑(𝑦, 𝑓𝑥)]          … (3.7.1) 

for all 𝑥, 𝑦 ∈ 𝑋, where 𝛼, 𝛾 ≥ 0 and  𝛼 + 2𝛾 < 1 . Then 𝑓 has a unique fixed 

point in 𝑋. 
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Abstract 

In this paper we present a computer-based JAVA program. The program proposing 

a Java based implementation to find a fixed point of a linear equations or functions 

satisfying Banach’s Contraction principle. This program approximates iteratively 

to the fixed point using a contraction mapping on real numbers. 
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1. Introduction 

  Fixed point theory plays an essential role in numerous mathematical and 

computational areas. In mathematical analysis, fixed point theory is a dignified and 

influencing branch or mathematics. This theory majorly used in differential 

equations, numerical methods and optimization. 

  In 1922 S. Banach has proved a very useful and significant result which is 

Banach’s contraction principle.  

  Banach’s Contraction principle States that "if f is a contraction mapping on 

complete metric space, then f has a unique fixed point." 

  Stefen Banach was a leading figure in function analysis. Fields like 

Topology, differential equations, numerical analysis are the areas in which his work 

influenced very effectively. His Contraction principle was one of the innovative 

results in the metric fixed point theory in mathematical analysis and has application 

in multiple scientific. Mathematical and computational field. 

  In 1912 Luitzen Brower has proved that any continuous function mapping 

a convex compact subset of Rn to itself has a fixed point. This work is done earlier 

than Banach’s Contraction principle. 

  In 1930 Julius Schauder expanded Brower’s fixed point theorem to infinite 

dimensional spaces. Many remarkable works have done in the field of fixed point 

theory. S. Kakutani developed a generalization in 1941 which was useful in game 

theory and economics. 

  In this paper we are presenting a computer program and a computational 

approach to find a fixed point of a linear equation satisfying Banach’s Contraction 

principle. 

  Banach’s Contraction principle -Let (𝑋, 𝑑) be a complete metric space and 

let 𝑓: 𝑋 → 𝑋 be a contraction mapping, there exists constant 𝑐 i.e. 
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  0 ≤ 𝑐 < 1 such that 𝑑(𝑓(𝑥), 𝑓(𝑦))  =  𝑐 𝑑(𝑥, 𝑦) for every 𝑥, 𝑦 ∈ 𝑋  
  This theorem guarantees that f has a unique fixed point x which can be 

iteratively approximates as 𝑥𝑛+1 = 𝑓(𝑥), When 𝑥𝑛   converges to 𝑥 as 𝑛 → ∞. 
  In this program we will take an initial guess x0, and will apply the function 

iteratively. This program will do the process and will show that what is an exact 

fixed point of the given linear equation. This program will show fixed point correct 

up to 4 decimal places. And this program will also show that how many iterations 

has done to find exact fixed point. 
 

2. Preliminaries 

Definition 2.1. (Metric Space) [05]: A metric space is a set X equipped with a 

[distance function d that satisfies the following properties: 

1. Non-negativity: For all 𝑥, 𝑦 ∈  𝑋, 𝑑(𝑥, 𝑦)  ≥  0. 
2. Identity of indiscernible: For all 𝑥, 𝑦 ∈  𝑋, 𝑑(𝑥, 𝑦)  =  0 if and only if 

𝑥 =  𝑦. 
3. Symmetry: For all 𝑥, 𝑦 ∈  𝑋, 𝑑(𝑥, 𝑦)  =  𝑑(𝑦, 𝑥). 
4. Triangle inequality: For all 𝑥, 𝑦, 𝑧 ∈  𝑋, 𝑑(𝑥, 𝑧)  ≤  𝑑(𝑥, 𝑦)  +  𝑑(𝑦, 𝑧). 

The function d is called a metric on 𝑋. The pair (𝑋, 𝑑) is called a metric space. 
 

Definition 2.2. (Fixed Point) [04]: A point which remains invariant under the 

transformation is said to be a Fixed Point. 

Example - Let 𝑓: 𝑅 → 𝑅 given by 𝑓(𝑥)  = 𝑥2 +  1. The fixed points of f are the 

solutions to the equation 𝑥2 +  1 =  𝑥; it follows that 𝑥 =  1/2 ±  √3/2 are the 

fixed points of f. 
 

Definition 2.3. (Contraction mapping) [01]:  𝐿𝑒𝑡 𝑋 =  (𝑋, 𝑑) be a metric space. 

A mapping 𝑇: 𝑋 → 𝑋 is called a contraction on X if there is a positive real number 

𝑎 <  1st for all x. y ∈ X. 𝑑 (𝑇𝑥. 𝑇𝑦)  ≤  𝑎 𝑑(𝑥 , 𝑦) , (𝑎 < 1). 
Geometrically this means that any points x and y have images that are together than 

those points x and y; more precisely, the ratio 𝑑 (𝑇𝑥, 𝑇𝑦)/𝑑(𝑥, 𝑦) does not exceed 

a constant a which is strictly less than 1 
 

Definition 2.4. (Class) [02]: A class is a blueprint or template for creating objects 

in object-oriented programming. It defines attributes (fields/variables) and 

behaviours (methods/functions) that objects instantiated from the class will have. 
 

Definition 2.5. (Method) [03]: A method in Java is a block of code that performs 

a specific task and can be called to execute when needed. It enhances code 

reusability and modularity. A method typically consists of a name, return type, 

parameters (optional), and a body containing executable statements. 
 

Definition 2.6. (Datatype) [10]: A data type is a classification that specifies which 

type of value a variable can hold in a programming language. It determines the 

possible values for that type, the operations that can be performed on it, and the 

way the values are stored in memory. 
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Definition 2.7. (Variable) [03]: A variable in Java is a named memory location 

used to store data that can be changed during program execution. Each variable has 

a data type, which defines the kind of values it can hold, such as integers, floating-

point numbers, or characters. 

Definition 2.8. (While loop) [03]: A while loop in Java is a control flow statement 

that repeatedly executes a block of code as long as a specified Boolean condition 

evaluates to true. It is useful when the number of iterations is not known 

beforehand. 

Definition 2.9. ((Fnction)Math.abs) [03]: The Math.abs() function in Java returns 

the absolute value of a given number. It removes any negative sign, ensuring the 

result is always non-negative. This function is overloaded to work with different 

numeric types such as int, long, float, and double. 

Definition 2.10. (object) [03]: An object in Java is an instance of a class that 

encapsulates both state (attributes/fields) and behaviour (methods/functions). 

Objects are created using the new keyword and allow interaction with class-defined 

functionalities. 
 

3. Main Approach (Java implementation) 
public class Contraction  

{ 

     public static double contFun(double x)  

{ 

        return 0.4 * x + 1; 

} 

 public static double findFixedPoint(double x0, double e, int maxIterations)  

{ 

        double currentX = x0;            

        double nextX = contFun(currentX);  

        int iteration = 1;                        

 System.out.printf("Iteration %d: x = %.6f%n", iteration, nextX); 

 while (Math.abs(nextX - currentX) > e && iteration < maxIterations) 

         { 

           currentX = nextX;                     

            nextX = contFun(currentX);  

            iteration++;                          

            System.out.printf("Iteration %d: x = %.6f%n", iteration, nextX);  

        } 

return nextX;  

    } 

public static void main(String[] args)  

{ 

        double x0 = 0.0;    

        //x=initial guess    

        double e= 0.0001;     
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        //e=tolerance   

        int maxIterations = 50;          

 System.out.println("Finding fixed point using Banach's Contraction Principle..."); 

        double fixedPoint = findFixedPoint(x0, e, maxIterations); 

        System.out.printf("%nApproximate Fixed Point: %.6f%n", fixedPoint); 

    } 

} 

Output – 

Finding fixed point using Banach's Contraction Principle... 
Iteration 1: x = 1.000000 

Iteration 2: x = 1.400000 

Iteration 3: x = 1.560000 

Iteration 4: x = 1.624000 

Iteration 5: x = 1.649600 

Iteration 6: x = 1.659840 

Iteration 7: x = 1.663936 

Iteration 8: x = 1.665574 

Iteration 9: x = 1.666230 

Iteration 10: x = 1.666492 

Iteration 11: x = 1.666597 

Iteration 12: x = 1.666639 

Approximate Fixed Point: 1.666639 
 

4. Conclusion 

This paper is introducing a java based program to find the exact fixed point of a 

linear equation satisfying Banach’s contraction principle, implementation of this 

program may help to provide a fixed point of various types of linear equations. 
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1. Introduction 

  The concept of a generalized metric space introduced by Branciari [1] in 

which the triangular inequality of a metric space has been replaced by a more 

general inequality in which instead of three points it involving four points. As such, 

any metric space is generalized metric space but the converse is not true [1]. He 

presented the well-known Banach's fixed point theorem in such a space. a further 

generalization of that result has been obtained. 

  It becomes natural to explore whether alternative well-known fixed-point 

theorems—beyond those that rely strictly on contraction-type mappings—can also 

be established within the framework of generalized metric spaces. In this paper, we 

pursue this line of inquiry by directing our attention to such theorems and 

presenting a fixed-point result that extends existing findings through slight but 

meaningful modifications, specifically tailored to these broader spaces. In this 

paper we generalized the result of [10] by taking more general inequality. 
 

2. Preliminaries  

  Following definitions are required in the sequel. 

  Throughout, the letters R and N will denote the set of all non-negative real 

numbers and the set of all positive integers respectively. 

Definition 2.1: Let X be a set and 𝑑: 𝑋2  →  𝑅+ a mapping such that for all 𝑥, yϵX 

and there exist a point conditions. X. different from x and y, one has following 

1 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 =  𝑦 

2 𝑑(𝑥, 𝑦) = 𝑑(𝑦. 𝑥) 

3 𝑑(𝑥, 𝑦) ≤  𝑑(𝑥. 𝑧)  +  𝑑(𝑧. 𝑦) 

Then we will say that (𝑋, 𝑑) is a metric space. 

Definition 2.2: Let X be a set and  𝑑: 𝑋2  →  𝑅+   a mapping such that for all 

𝑥, 𝑦 𝜖 𝑋 and for all distinct point 𝑥1, 𝑥2, 𝑥3, … . . , 𝑥𝑛 𝜖 𝑋. cach of them different from 

x and y. one has 
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1 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 =  𝑦 

2 𝑑(𝑥, 𝑦) = 𝑑(𝑦. 𝑥) 

3 . 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥. 𝑥1) + 𝑑(𝑥1, 𝑥2) +  … + 𝑑(𝑥𝑛−1, 𝑥𝑛) + 𝑑(𝑥𝑛, 𝑦)  Then we will 

say that (𝑋. 𝑑) is generalized metric space (or shortly g.m.s.) 

Definition 2.3: 1.et (𝑋. 𝑑) be a g.m.s. A sequence {𝑥𝑛} in 𝑋 is said to be a Cauchy 

sequence if for any 𝜔 >  0 there exist 𝑛 ∈  𝑁 such that for all 𝑚, 𝑛𝜖 𝑁, 𝑛 ≤ 𝑚, 

one has 𝑑(𝑥𝑛, 𝑥𝑛+𝑚)  <  𝜀.  Then (𝑋. 𝑑)  is called complete if every Cauchy 

sequence in X is convergent in X. 

Let T:X→ X be a mapping where X is a g. m. s. for each x ∈ X  

  𝑂(𝑥, ∞)  = {𝑥, 𝑇𝑥, 𝑇2𝑥 … . } 

Definition 2.4: X is said to be T-orbitally complete if and only if every Cauchy 

sequence which is contained in 𝑂(𝑥, ∞) for some 𝑥𝜖𝑋 converges in X. 
 

3. Main Result 

Theorem 3.1   Let (𝑋, 𝑑) be a metric space, if 𝑇: 𝑋 → 𝑋 be a mapping such that  

      𝑑(𝑇𝑥, 𝑇𝑦)  ≤ 𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑥, 𝑦)]                 … (3.1.1) 

holds for all 𝑥, 𝑦𝜖𝑋 where 0 < 𝛽 <
1

5
 

and if X is T-orbitally complete then T has a unique fixed point in X. 

Proof: Let 𝑥𝜖𝑋 now using (1) with 𝑦 = 𝑇𝑥 

𝑑(𝑇𝑥, 𝑇𝑦)  ≤ 𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑥, 𝑇𝑦) + 𝑑(𝑥, 𝑦)] 
                𝑑(𝑇𝑥, 𝑇2𝑥) ≤ 𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑇𝑥, 𝑇2𝑥) + 𝑑(𝑥, 𝑇2𝑥) + 𝑑(𝑥, 𝑇𝑥)] 
              𝑑(𝑇𝑥, 𝑇2𝑥)(1 − 𝛽) ≤ 𝛽[2𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑥, 𝑇2𝑥)] 
              𝑑(𝑇𝑥, 𝑇2𝑥)(1 − 𝛽) ≤ 𝛽[2𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑥, 𝑇𝑥) + (𝑇𝑥, 𝑇2𝑥)] 
            𝑑(𝑇𝑥, 𝑇2𝑥)(1 − 2𝛽) ≤ 3𝛽𝑑(𝑥, 𝑇𝑥) 

              𝑑(𝑇𝑥, 𝑇2𝑥)(1 − 2𝛽) ≤
3𝛽

(1−2𝛽)
  𝑑(𝑥, 𝑇𝑥)                   …(3.1.2) 

Again, by using (3.1.1) with and  

       𝑑(𝑇2𝑥, 𝑇3𝑥) ≤ 𝛽[𝑑(𝑇𝑥, 𝑇2𝑥) + 𝑑(𝑇2𝑥, 𝑇3𝑥) + 𝑑(𝑇𝑥, 𝑇3𝑥) + 𝑑(𝑇𝑥, 𝑇2𝑥)] 
               𝑑(𝑇2𝑥, 𝑇3𝑥)(1 − 𝛽) ≤ 𝛽[2𝑑(𝑇𝑥, 𝑇2𝑥) + 𝑑(𝑇𝑥, 𝑇3𝑥)] 
               𝑑(𝑇2𝑥, 𝑇3𝑥)(1 − 𝛽) ≤ 𝛽[2𝑑(𝑇𝑥, 𝑇2𝑥)) + 𝑑(𝑇𝑥, 𝑇2𝑥) + (𝑇2𝑥, 𝑇3𝑥)] 
             𝑑(𝑇2𝑥, 𝑇3𝑥)(1 − 2𝛽) ≤ 3𝛽𝑑(𝑇𝑥, 𝑇2𝑥) 

                               𝑑(𝑇2𝑥, 𝑇3𝑥) ≤
3𝛽

(1−2𝛽)
  𝑑(𝑇𝑥, 𝑇2𝑥)                   

By (3.1.2) 

                   𝑑(𝑇2𝑥, 𝑇3𝑥) ≤
3𝛽

(1−2𝛽)
 

3𝛽

(1−2𝛽)
 𝑑(𝑥, 𝑇𝑥)  

                  𝑑(𝑇2𝑥, 𝑇3𝑥) ≤ (
3𝛽

1−2𝛽
)

2

𝑑(𝑥, 𝑇𝑥) 

Inductively we have  

                  𝑑(𝑇2𝑥, 𝑇3𝑥) ≤ (
3𝛽

1−2𝛽
)

𝑛

𝑑(𝑥, 𝑇𝑥) 

Let 
3𝛽

1−2𝛽
= 𝑟, where r < 1 therefore 

                    𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) ≤ 𝑟𝑛𝑑(𝑥, 𝑇𝑥)                                                …(3.1.3) 
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Now we can claim that {𝑇𝑛𝑥} is Cauchy sequence. 

For 𝑚 > 𝑛 we have by the definition () 

𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) ≤ 𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) + 𝑑(𝑇𝑛+1𝑥, 𝑇𝑛+2𝑥) +  … + 𝑑(𝑇𝑚−1𝑥, 𝑇𝑚𝑥) 

By (3.1.3) 

              𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) ≤ 𝑟𝑛𝑑(𝑥, 𝑇𝑥) + 𝑟𝑛+1𝑑(𝑥, 𝑇𝑥) +  … . +𝑟𝑚−1𝑑(𝑥, 𝑇𝑥) 

             𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) ≤ 𝑑(𝑥, 𝑇𝑥)[𝑟𝑛 + 𝑟𝑛+1 +  … + 𝑟𝑚−1] 
Let 𝑚 = 𝑛 + 𝑝, 𝑝 > 1, 

            𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) ≤ 𝑑(𝑥, 𝑇𝑥)[𝑟𝑛 + 𝑟𝑛+1 +  … + 𝑟𝑛+𝑝−1] 
            𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) ≤ 𝑑(𝑥, 𝑇𝑥)[1 + 𝑟 + 𝑟2 + … + 𝑟𝑝−1] 

            𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) ≤ 𝑑(𝑥, 𝑇𝑥)𝑟𝑛 (
1−𝑟𝑝

1−𝑟
) 

            𝑑(𝑇𝑛𝑥, 𝑇𝑚𝑥) ≤ 𝑑(𝑥, 𝑇𝑥) (
𝑟𝑛

1−𝑟
) 

For all, 𝑛𝜖𝑁  since 0 < 𝑟 < 1  then 𝑟𝑛 → 0   as 𝑛 → ∞  and so {𝑇𝑛𝑥}  is Cauchy 

sequence. Since X is T-orbitally complete let 𝑇𝑛𝑥 = 𝑢  .Therefore all its 

subsequence also converges to 𝑢. 

       Now by using definition (2.2) 

   𝑑(𝑢, 𝑇𝑢) ≤ 𝑑(𝑢, 𝑇𝑛𝑥) + 𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) +  … + 𝑑(𝑇2𝑛−1𝑥, 𝑇2𝑛𝑥) 

+𝑑(𝑇2𝑛𝑥, 𝑇𝑢) 

By using (3.1.1) 

                  𝑑(𝑢, 𝑇𝑢) ≤ 𝑑(𝑢, 𝑇𝑛𝑥) + 𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) +  … + 𝑑(𝑇2𝑛−1𝑥, 𝑇2𝑛𝑥) 

                                               +  𝛽[𝑑(𝑇2𝑛−1𝑥, 𝑇2𝑛𝑥) + 𝑑(𝑢, 𝑇𝑢) +  𝑑(𝑇𝑛−1𝑥, 𝑢)] 

     𝑑(𝑢, 𝑇𝑢)(1 − 𝛽) ≤ 𝑑(𝑢, 𝑇𝑛𝑥) + 𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) +  … 

                   + (1 − 𝛽)𝑑(𝑇2𝑛−1𝑥, 𝑇2𝑛𝑥) + 𝛽𝑑(𝑇𝑛−1𝑥, 𝑢) 

                  𝑑(𝑢, 𝑇𝑢) ≤
1

1−𝛽
𝑑(𝑢, 𝑇𝑛𝑥) + 𝑑(𝑇𝑛𝑥, 𝑇𝑛+1𝑥) +  … 

                     +(1 − 𝛽)𝑑(𝑇2𝑛−1𝑥, 𝑇2𝑛𝑥) + 𝛽𝑑(𝑇𝑛−1𝑥, 𝑢) 

Limiting 𝑛 → ∞ 

    𝑑(𝑢, 𝑇𝑢) ≤
1

1 − 𝛽
[𝑑(𝑢, 𝑢) + 𝑑(𝑢, 𝑢) +  … + (1 + 𝛽)𝑑(𝑢, 𝑢) + 𝛽𝑑(𝑢, 𝑢)] 

𝑑(𝑢, 𝑇𝑢) ≤ 0  implies 𝑇𝑢 = 𝑢         ⸫ 𝑢 𝑖𝑠 𝑓𝑖𝑥𝑒𝑑 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓𝑓 𝑇. 

Uniqueness: Let 𝑣 be another fixed point of 𝑇   
                                             ⸫ 𝑇𝑣 = 𝑣 

Now using (3.1.1) with 𝑥 = 𝑢 and 𝑦 = 𝑣 

𝑑(𝑇𝑢, 𝑇𝑣) ≤ 𝛽[𝑑(𝑢, 𝑇𝑢) + 𝑑(𝑣, 𝑇𝑣) + 𝑑(𝑢, 𝑇𝑣) + 𝑑(𝑢, 𝑣)] 
                                𝑑(𝑢, 𝑣) ≤ 𝛽[𝑑(𝑢, 𝑢) + 𝑑(𝑣, 𝑣) + 𝑑(𝑢, 𝑣) + 𝑑(𝑢, 𝑣)] 
                                𝑑(𝑢, 𝑣) ≤ 2𝛽𝑑(𝑢, 𝑣) 

                𝑑(𝑢, 𝑣)(1 − 2𝛽) ≤ 0 

Since 0 < 𝛽 <
1

5
 therefore 𝑑(𝑢, 𝑣) = 0 implies 𝑢 = 𝑣 

This completes the proof of theorem. 

Corollary 3.2.  Let (𝑋, 𝑑) be a metric space, if  𝑇: 𝑋 → 𝑋 be a mapping such that 

                              𝑑(𝑇𝑥, 𝑇𝑦)  ≤ 𝛽[𝑑(𝑥, 𝑇𝑥) + 𝑑(𝑦, 𝑇𝑦) + 𝑑(𝑥, 𝑇𝑦)]               
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 holds for all 𝑥, 𝑦𝜖𝑋 where 0 < 𝛽 <
1

4
 

 and if X is T-orbitally complete then T has a unique fixed point in X. 
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