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This Volume of
INSPIRE

is being dedicated to

Panini

Panini was a Sanskrit grammarian, logician, philologist, and revered scholar
in ancient India, variously dated between the 7th and 4th century BCE. Panini was
an ancient Vedic Indian Mathematician and Father of linguist. After all he is widely
regarded as the father of Sanskrit grammar. His magnum opus, the Astadhyaya is a
comprehensive and systematic treatise on Sanskrit morphology, phonology, and
syntax. Panini's work had a profound impact on the development of Indian
linguistics and literature. His rules and principles were adopted by later
grammarians and scholars, and his influence can be seen in the works of many
classical Indian authors.

In addition to his contributions to linguistics, Panini also made significant
contributions to the development of mathematics. He introduced the concept of zero
and developed a system of mathematical notation that is still used in India today.
He also made contributions to the study of astronomy and physics. Panini's work is
considered to be one of the most important contributions to Indian culture and
scholarship. He is remembered as a brilliant and innovative thinker whose work has
had a lasting impact on the world.
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FOREWORD

The present volume of INSPIRE contains the various research papers of
Faculty and Research Scholars of Department of Mathematics, INSTITUTE FOR
EXCELLENCE IN HIGHER EDUCATION, BHOPAL (M. P.).

For me it is the realization of a dream which some of us have been nurturing
for long and has now taken a concrete shape through the frantic efforts and good
wishes of our dedicated band of research workers in our country, in the important
area of mathematics.

The editor deserves to be congratulated for this very successful venture. The
subject matter has been nicely and systematically presented and is expected to be
of use to the workers.

(Dr. Pragyesh Kumar Agarwal)
Director & Patron
IEHE, Bhopal (M. P.)
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STUDY OF VARIATION IN Dst INDEX
AND OCCUEENCE OF SEISMIC EVENT

Santosh Kumar Jain

Department of Physics,
Institute for Excellence in Higher Education Bhopal M.P., India

ABSTRACT

This review summarizes the observational and statistical literature on whether
variations in the geomagnetic Dst index (a widely used measure of ring-current-driven
geomagnetic storms) are associated with changes in earthquake occurrence. | summarize
background physical ideas, the main empirical approaches used (superposed epoch
analysis, time-lag/binomial tests, spectral/wavelet approaches), highlight representative
positive and null findings, discuss methodological pitfalls and biases, and outline a research
agenda to clarify whether a real, reproducible link exists and, if so, by what mechanism.

1. INTRODUCTION:

Interest in solar—terrestrial influences on seismicity has waxed and waned
for decades. The Dst (Disturbance storm time) index is a one-number daily (and
hourly) measure of the strength of the equatorial ring current, commonly used to
identify geomagnetic storms. Several recent statistical studies have reported
apparent clustering of geomagnetic storms near the times of large earthquakes;
other studies, however, find no robust association once catalogue biases and
statistical pitfalls are controlled for. The result is a mixed literature that requires
careful, method-aware synthesis.

The Dst index (hourly values; negative values indicate enhanced westward
ring current and storm-time depressions of the equatorial magnetic field) is
produced from a network of low-latitude magnetometers and widely used to
quantify storm magnitude and timing. Geomagnetic storms are driven by solar wind
structures (CMEs, high-speed streams) and are accompanied by large variations in
ionospheric  currents, magnetospheric electric fields, energetic particle
precipitation, and induced ground-level magnetic-and-electric fields. These space-
weather changes can (in principle) lead to electromagnetic induction in the crust
and lithosphere, changes in pore-fluid pressures via electrokinetic coupling, or
modulation of shallow geoelectric conditions — all suggested pathways by which
external electromagnetic forcing could, hypothetically, alter near-failure stress
conditions on faults. Mechanistic plausibility has been proposed, but remains
highly speculative and quantitatively unproven.

Empirical approaches used in the literature

Researchers have used a handful of common approaches:

1. Superposed epoch analysis (SEA) — Examine average Dst (or storm
counts) in windows before/after earthquakes and test whether pre-event or
post-event means deviate from random expectation.
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2. Time-lag/binomial / shift-matching tests — Shift storm/event series
relative to each other to assess time-lagged association (e.g., increases at
particular lags like ~27—-28 days).

3. Case studies — Detailed investigations of individual large earthquakes and
nearby ionospheric/geomagnetic disturbances.

4. Spectral and wavelet analyses — look for common periodicities or
coherence between seismicity rates and geomagnetic indices.

Each method has strengths and vulnerabilities. SEA is intuitive but sensitive
to temporal clustering in seismic catalogs (aftershock sequences), catalog
completeness, and the choice of “isolated” versus clustered events. Time-lag
searches risk multiple-testing problems (search many lags and you will find some
apparently significant peaks by chance). Case studies can be suggestive but cannot
establish generality.

2. RESULTS:
2.1 Studies reporting confident relations

A number of statistical analyses have reported increased geomagnetic-storm
activity in the days prior to major earthquakes (e.g., M > 7.0 global events during
1957-2020), using SEA and significance testing to argue that more geomagnetic
storms occur before large earthquakes than after them; some studies report strongest
signals ~7-10 days pre-event for “isolated” large events.

More recent work analysing nearly a century of Dst/Kp data has reported
increases in earthquake counts following intense geomagnetic storms, and specific
analyses have suggested an increased earthquake probability at particular time
span.

Conversely, several analyses find little or no robust relationship once
careful controls are applied. Time-series and statistical reanalyses conclude that
apparent correlations can be produced by catalog non-stationarity, aftershock
contamination, multiple testing, or arguably insufficient control of confounders.
These works caution that the bulk of seismic energy release is governed by tectonics
and internal stress evolution, and that external solar—-geomagnetic forcing (if real)
would be a small modulating term, lags (for example ~27-28 days after intense
storms) using shift-matching correlation methods. These studies argue for a non-
random association at particular timescales.

2.2 Studies reporting null or weak results: Number of studies also report a weak
connection in between variation in Dst index and seismic occurrence.

3. CHALLENGES:

1. Catalog completeness and delustering. Aftershock sequences produce
strong temporal clustering; failure to decluster or to restrict to “isolated”
mainshocks can create spurious associations. Several positive studies
attempt to use isolated-event subsets, but different declustering algorithms
change results.
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2.

Multiple testing and data dredging. Searching many windows, lags,
magnitudes, and indices without correcting for the number of trials inflates
false positives. The reported ~27-28 day lag peaks are an example where
multiple-lag searching may amplify chance findings.

Physical mechanism and effect size. Proposed mechanisms (electrokinetic
pumping, piezoelectric modulation, stress changes from induced currents)
are often qualitative; quantitative estimates of induced stress perturbations
versus tectonic stress drops are typically orders of magnitude smaller. That
mismatch challenges causal interpretation even when statistical associations
appear.

Selection bias and hindsight. Choosing well-known large earthquakes and
then searching nearby records for anomalies risks confirmation bias.
Prospective forecasting tests (pre-registered hypotheses tested on out-of-
sample data) are rare.

Index choice and data sources. Different geomagnetic indices (Dst, Kp,
AE, local magnetometer components, TEC) measure different aspects of
magnetospheric/ionospheric disturbance; the association may be index-
dependent. Studies that combine multiple indices increase opportunities for
spurious cross-correlations unless carefully corrected.

4. RECCOMENDATIONS FOR FUTURE RESEARCH:

1.

Pre-registration and out-of-sample testing. Define hypotheses and
analysis pipelines before examining data; evaluate on withheld time periods
or future data to avoid overfitting.

Consistent declustering and sensitivity checks. Report results for
multiple declustering algorithms and for both global and regionally
confined catalogs.

Multi-index approach with corrections. Limit the number of indices/lags
tested, apply multiple-comparison corrections, and be transparent about all
trials.

Mechanistic modeling. Build quantitative models that estimate induced
stress or pore-pressure changes from realistic geomagnetic/ionospheric
perturbations, then compare those to typical fault critical stress thresholds.
Regional studies. If a true effect exists it may be conditional on lithology,
crustal conductivity, or tectonic state; focused regional analyses (with high
local magnetometer coverage and dense seismic catalogs) could be more
sensitive than global aggregation.

5. CONCLUSION:

There is active, modern interest in whether geomagnetic storms (as

measured by Dst and related indices) influence earthquake occurrence. Some well-
executed statistical studies report signals suggesting non-random temporal
association, but others find no robust link once methodological issues are
controlled.

3
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The balance of evidence currently points to inconclusive results: intriguing
statistical hints exist but do not yet demonstrate a strong, reproducible causal effect.
Resolving the question will require tightly pre-registered hypothesis tests, careful
control of seismic catalog biases, quantitative mechanistic modelling that shows a
plausible effect size, and replication on independent datasets.
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REVIEW ARTICLE ON BARDEEN - COOPER AND SCHRIEFFER
THEORY OF SUPERCONDUCTING PHENOMENA

Santosh Kumar Jain and Shruti Pandharipande
Department of Physics and Electronics
Institute for Excellence in Higher Education, Bhopal, M.P, India

ABSTRACT

The aim of, this review article to study the BCS theory with
superconducting experimental aspects for different materials. The BCS theory is
solely based on the electron-phonon-electron interaction to explain the
conventional superconductivity in materials. It became a widely used theory to
predict the nature of materials. However, time to time it failed to explain the
continuous growing number of superconducting phenomena classified as
‘unconventional’. It could not account for many unknown variables like coulombic
pseudo potential and magnetic spin fluctuation. Hence a need to revisit the for
understanding and more importantly the application of BCS theory is essential.

1. Introduction:

Many theories which we learn today have been there for quite some time
now, but our textbooks forget to update them with time and further students grow
up to become researchers but do not bother to ask the most fundamental question:
does these theories actually work? Hence a time-to-time revisit of such theories
should be done to understand their current relevance to the field, which is what
we achieve in this review paper.

One such theory is the BCS theory. The Bardeen-Cooper-Schrieffer (BCS)
theory revolutionized our understanding of superconductivity by providing the
first microscopic explanation for this phenomenon. Its success in explaining
conventional low-temperature superconductors, such as lead (Pb) and mercury
(Hg), earned widespread acceptance. [1] However, the discovery of high-
temperature superconductivity in 1986 and other future developments have raised
a question on whether BCS theory can fully account for all forms of
superconductivity or not? [2]

In this review, we reexamine the foundations of BCS theory, highlighting
areas where it has successfully predicted superconducting behavior, as well as the
challenges posed by materials and phenomena that lie beyond its scope. We
explore alternative theories and experimental findings that suggest the need for a
revised or extended framework for understanding superconductivity.

2. BCS: why we accept it widely:

It is one of the few theories in the history of Physics which won the Nobel
prize and for a good reason. It offered a different perspective and almost
approximate theoretical results for the superconductors present then. A theory
worth presenting a Nobel prize for sure overachieved many milestones.
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Some factors which undoubtedly contributed in proving the theory right
are as followed.

2.1. The Part which works

The BCS theory is based on the concept of Cooper pairs, where electrons
with opposite momentum and spins form bound states with phonons in between.
These pairs condense into a macroscopic quantum state, forming electron phonon
electron interactions, resulting in zero electrical resistance [3] BCS theory also
explains the energy gap, which is a consequence of the pairing mechanism,
providing a barrier to electron scattering and thereby eliminating electrical
resistance below the critical temperature Tc.[4]

It explained zero resistance perfectly. As the Cooper pairs create an energy
gap at the Fermi surface, which leads to zero electrical resistance. The electrons
together cancel out each other's spin and act like bosons, which share the same
state, allowing them to coordinate their movement and reduce resistance to zero.
This formation of Cooper pairs also prevents scattering events that would normally
cause resistance in conventional metals.[3]

The theory undoubtedly was able to explain the concepts of Cooper pairs,
of macroscopic phase coherence, and the existence of an energy gap. The electron
phonon electron interaction leading to the formation of Cooper pairs explained
how the smooth movement of the pair takes place in a material. The macroscopic
phase coherence refers to how the wave function of the Cooper pairs is locked
together, maintaining a fixed phase relationship throughout the material. This
helps in superconducting current to flow. This also leads to a coherent state which
further makes a energy band gap in the electronic density of states, this means to
break the Cooper pairs down we need a certain amount of energy. [5]

These key elements of the theory have successfully explained and even
predicted perplexing experimental observations, such as the nuclear magnetic
resonance (NMR) relaxation rate [6] and Josephson tunneling [7]. However,
despite their wide acceptance, it can be seen that several other aspects of BCS
theory, particularly those involving the electron—phonon interaction as the driving
mechanism, are incorrect and warrant further scrutiny.

2.2 The Endurance of BCS Theory

Many physicists argue that the long-standing acceptance of BCS theory,
spanning more than 50 years, is evidence of its correctness. However, it is very
much possible that the flaws in theories can be detected anytime even after its over
and over use. All it takes is one experimental result and we have many in the case
of BCS theory. [8]

2.3 The support of conventional superconductors

The most widely cited evidence supports the idea that BCS electron phonon theory
explains conventional superconductors Congress from the tunneling experiments.
In these experiments, small "wiggles" or variations in the tunneling conductance
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(the current passing through a barrier between a normal metal, an insulator, and a
superconductor) match the Maximas and Minima in the phonon density of states
(the distribution of vibrational energy in the crystal lattice) measured through
neutron scattering experiments. This correlation, proving the electron phonon
interaction, has been observed in several materials, particularly lead (Pb). [9-11]

The interpretation of tunneling results is cast in terms of the spectral
function a?F(w), where F(®) is the phonon spectral function détermined from
neutron scattering experiments. What is not emphasized is that o is itself often a
strong function of w that is not directly accessible to experiment. [12]

3. Challenges to BCS Theory

The challenges of BCS theory started to occur in the early 1980s when new
materials were rapidly being discovered. Our beloved BCS theory however was
unable to explain the superconductivity in many of these modern materials. New
terms emerged and challenges continued to grow. Results which the complex
formulism of BCS theory could not explain.

3.1. High-Temperature Superconductors
The discovery of high-temperature superconductivity (HTSC) in copper-
oxide (cuprate) materials by Bednorz and Miller in 1986 posed the first major
challenge to the BCS framework. These materials exhibit critical temperatures far
higher than those predicted by the electron-phonon coupling mechanism central to
BCS theory. Additionally, the pairing symmetry in HTSCs is d-wave rather than
the conventional s-wave symmetry assumed in BCS theory, indicating that the
pairing mechanism may be fundamentally different.[13]
3.1.1. Breakdown of the Phonon Mechanism
One of the key tenets of BCS theory is that electron pairing is mediated by
phonons—vibrations of the crystal lattice. However, in high-temperature
superconductors, the phonon-based mechanism appears insufficient to
explain the high Tc . It is difficult to understand how an electron phonon
electron interaction can overcome strong coulombic repulsion between the
two electrons . This has led researchers to propose alternative mechanisms,
such as pairing mediated by spin fluctuations or other electronic
interactions.[14]
3.1.2. Pseudogap Phenomenon
Another puzzling feature in high-temperature superconductors is the
pseudogap phase, a state in which a partial energy gap forms above the
superconducting transition temperature. This phase is not easily
reconcilable with BCS theory, which predicts a full energy gap only below
Tc. The origin of the pseudogap remains a phenomenon which we know
very little about, however it can definitely be experimentally observed in
materials. It seems to be more complex than what BCS theory can explain.
[15]
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3.2. Iron-Based Superconductors

In 2008, the discovery of iron-based superconductors (FeSCs) provided
another system that challenges the BCS framework. While FeSCs display
superconductivity at relatively high temperatures, their electronic structure and
pairing mechanisms differ significantly from those of both conventional
superconductors and cuprates. Specifically, FeSCs exhibit multiple Fermi surfaces
and unconventional pairing symmetries, further straining the applicability of the
BCS formalism. As Unlike traditional superconductors, IBS do not contain copper
or other common conductive elements. Instead, they rely on iron and oxygen atoms
arranged in a specific crystal structure to exhibit superconductivity. [16-18]

3.3. Exotic Superconductors

In addition to high-temperature and iron-based superconductors, several
exotic systems have been discovered that do not conform to the predictions of BCS
theory. These include:

1. Heavy fermion superconductors: In materials like UPt; and CeColns,
strong electronic
correlations dominate, and the superconducting pairing mechanism is
thought to involve magnetic fluctuations rather than phonons.

2. Topological superconductors: These systems exhibit non-trivial
topological order and host exotic quasiparticles, such as Majorana
fermions. BCS theory, rooted in the assumption of conventional pairing, is
not equipped to explain the unique properties of these materials.

3. Superconductivity in doped semimetals and twisted bilayer graphene:
These recently discovered superconductors exhibit unconventional pairing
mechanisms that do not easily fit within the BCS framework.[19-20]

3.4 Inability to explain the Meissner effect
The Meissner effect is one of the most fundamental characteristics of
superconductors. When a superconductor is cooled in the presence of a static
magnetic field, an electric current spontaneously develops near its surface,
effectively expelling the magnetic field from the interior of the material . However,
conventional superconductivity theory fails to address two key questions:

- How do the electrons near the surface of the superconductor acquire the

necessary velocity to screen the magnetic field inside?

- How is angular momentum conserved during this process?
These are fundamental questions that relate directly to the core nature of
superconductivity.[8]

In response to the first question, a conventional theorist might argue that
because the final state, with supercurrent flowing, has a lower free energy than the
initial state, the system will naturally transition to this state. However, the
supercurrent is a macroscopic phenomenon, and there should be a clearly
identifiable macroscopic force that causes the electrons near the surface to move
in the same direction to generate the necessary current.
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Atypical response would be that the force driving this motion is -dF/dx (the
change in free energy over distance), and no further explanation is needed. Yet,
this reasoning is flawed.[22]

Contrary to this explanation, Faraday’s law predicts the presence of an
induced electric field, which exerts a force on the charge carriers in the opposite
direction of what is needed to generate the Meissner current . For the supercurrent
to form, the superconductor must overcome this opposing force with another force
acting in the correct direction on the superfluid carriers. The -dF/dx term, which
suggests a force along the azimuthal direction (needed to create the Meissner
current), does not correspond to a real, physical force. The only relevant forces in
this context (excluding gravitational and nuclear forces) are the Lorentz
electromagnetic force and quantum pressure, which refers to the natural tendency
of quantum particles to reduce their kinetic energy by expanding their
wavefunctions . However, neither of these forces plays a role in the Meissner effect
according to conventional superconductivity theory.[23]

Addressing the second question, regarding angular momentum
conservation, is even more challenging within the conventional framework. In the
final state, the supercurrent carries mechanical angular momentum, while the total
angular momentum in the normal state is zero, creating a situation of "missing
angular momentum”. A common explanation is that this angular momentum is
transferred to the ionic lattice, but the conventional theory does not provide a clear
mechanism for how this transfer would occur. If the electrons were to transfer
angular momentum to the lattice through scattering with impurities or phonons,
this process should be clearly described, as the ions involved are essentially
classical objects. Yet, no such explanation has been provided, and it has been
argued that it may be impossible to describe this process within the framework of
conventional superconductivity theory .[24-28]

4. Alternative Theoretical Approaches

Given the limitations of BCS theory in explaining non-conventional
superconductors, several alternative and extended theoretical models have been
proposed.

4.1. Eliashberg Theory

Eliashberg theory extends the BCS formalism to account for strong
electron-phonon interactions and retardation effects. While this approach has been
successful in explaining certain strong-coupling superconductors, it still relies on
phonon-mediated pairing, limiting its applicability to materials where the electron-
phonon interaction is dominant.[29]

4.2. Spin-Fluctuation Mediated Pairing

In both cuprate and iron-based superconductors, spin fluctuations are
believed to play a crucial role in mediating the pairing interaction. This theory
posits that the exchange of virtual spin excitations, rather than phonons,



INSPIRE ISSN: 2455-6742
Vol. 10, Nov. 2024 T May 2025, No. 01 ¢ 02 05-13

leads to electron pairing. This mechanism naturally explains the d-wave pairing
symmetry observed in cuprates and the unconventional pairing in FeSCs.[30]

4.3. Quantum Criticality and Superconductivity

Many unconventional superconductors, including heavy fermion and iron-based
systems, exhibit superconductivity in the vicinity of a quantum critical point
(QCP)—a point at which a continuous phase transition occurs at absolute zero.
Quantum fluctuations near the QCP may provide the pairing mechanism in these
materials, suggesting that superconductivity in these systems is fundamentally tied
to quantum critical behavior, a phenomenon outside the scope of BCS theory.[31]

5. Experimental Evidence Challenging BCS Predictions

Several experimental findings provide evidence for superconducting
behavior that deviates from BCS predictions:
5.1. Nodal Structures and Gap Anisotropy
In many unconventional superconductors, such as cuprates and heavy fermion
systems, the superconducting gap is highly anisotropic, with nodes (zero-gap
points) in certain directions. This stands in stark contrast to the isotropic gap
predicted by BCS theory for s-wave superconductors.[32]
5.2. Unconventional Symmetry
Experiments on materials like strontium ruthenate (Sr.RuO.) and uranium-based
superconductors suggest that the pairing symmetry in these systems may be odd-
parity or spin-triplet, which is incompatible with the even-parity spin-singlet
pairing assumed in BCS theory.[33]

6. Conclusion: Is It Time to Move Beyond BCS?

While this paper has focused primarily on the BCS theory, the broader
implications extend across various domains of contemporary science. The same
forces that contribute to the persistence of BCS theory may also be sustaining other
flawed scientific frameworks today. As knowledge grows and becomes more
specialized, incoming students increasingly depend on “gatekeepers” — professors,
mentors, and established scientists — to guide their entry into the scientific
community. These gatekeepers often have vested interests in maintaining the
status quo. A young scientist with revolutionary ideas that challenge established
norms may face strong discouragement, and even risk being denied opportunities
in the field if they persist. By the time scientists reach an established position, they
are typically conditioned to accept the dominant truths.

In the case of BCS theory, it would be beneficial for journal editors to be more
open to papers that critically evaluate or challenge its validity, while recognizing
that some referees may have vested interests in rejecting such work. Allowing
these critical papers to be published in mainstream journals would encourage both
younger scientists and seasoned experts, especially those who are starting to have
doubts in light of recent experimental findings, to explore alternatives to
conventional BCS theory.

10
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Funding agencies should allocate at least a small portion of resources to
support experimental and theoretical studies that question BCS theory. Likewise,
conference and workshop organizers should invite speakers whose research
critically examines the theory, rather than avoiding these discussions.

Despite being more than fifty years old, BCS theory has never successfully
predicted a high-temperature superconductor and provides no useful guidance for
the discovery of new superconducting materials. Furthermore, it has failed to
explain the superconductivity of ten families of compounds discovered over the
last three decades, as well as fundamental phenomena such as the Meissner effect
and the behavior of rotating superconductors.

It is time to seriously consider that the stagnation in our understanding of
high-temperature cuprates and other unconventional superconductors may stem
from our failure to fully understand conventional superconductors. The possibility
must be acknowledged that BCS theory is fundamentally flawed, and just as other
long-standing scientific theories have been overturned in the past, it may soon be
time for BCS theory to undergo a significant overhaul.
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ABSTRACT
The goal of this paper is to define rational contraction in the context of S-
metric spaces and develop various fixed-point theorems in order to elaborate,
generalize, and synthesize a number of previously published results. Finally, to
illustrate the new theorem, an example is given.
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1. Introduction:

Fixed point theory is crucial in science and mathematics. This topic has
drawn a lot of interest from academics in the last two decades due to its wide range
of applications in disciplines such as nonlinear analysis, topology, and engineering
difficulties. The Banach contraction principle [2] is the starting point for most
generalizations of metric fixed point theorems. It's difficult to enumerate all of this
principle’'s generalizations. The Banach fixed-point theorem [2] ensures the
existence and uniqueness of fixed points of particular self-maps of metric spaces, as
well as a constructive approach for discovering them. The S-metric space was
introduced by Sedghi et al. [9]. It's a three-dimensional space called the S-metric
space. The concept of A-metric space was established by Abbas et al. [1], which is
a generalization of S-metric space. Jaggi [7], Das and Gupta [3] discovered the
fixed-point theorem for rational contractive type conditions in metric space. The
goal of this paper is to define rational contraction in the setting of S-metric spaces,
as well as to create various fixed-point theorems to elaborate, generalize, and
synthesize several previously published results. Finally, an example is given to
demonstrate the new theorem.

2. Preliminaries
Some valuable information and ideas will be presented in this section. Metric

spaces are very important in mathematics and applied sciences. So, some authors
have tried to give generalizations of metric spaces in several ways. Sedghi et al. [8,
10] introduced the notion of a D*-metric space as follows.
Definition 2.1 (see [8, 10]) Let X be a non-empty set. A D*-metric on X is a
function D*:X3 — [0,+) that satisfies the following conditions, for each
X,y,Z,a €EX;

(D*1). D*(x,y,z) = 0,

(D*2). D*(x,y,z) = Oifandonly if x =y = z.
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(D*3). D*(x,y,z) = D*{x,y,z} (Symmetry in all three variables),

(D*4). D*(x,y,z) < D*(x,y,a) + D*(a,z,z).
Then D* is called a D*-metric on X and (X, D*) is called a D*-metric space.
Definition 2.2 (see [9]) Let X be a nonempty set. A mapping S: X3 — [0, +) is
called an S-metric on X if and only if for all x,y, z,a € X, the following conditions
hold:

(S1). S(x,y,z) =0,

(S2). S(x,y,z) =0ifandonlyifx =y =z,

(S3). S(x,v,z) <S(x,x,a) + S(y,y,a) + S(z,z,a)
The pair (X, S) is called an S-metric space.
The following is the intuitive geometric example for S-metric spaces.
Example 2.3 (see [9]) Let X = R? and d be the ordinary metric on X. Put

S(x,y,z) = d(x,y) +d(x,z) + d(y,z)

forall x,y,z € X, that is, S is the perimeter of the triangle given by x,y,z. Then S is
an S-metric on X.
Example 2.4 Let X = [1, +) . Define S: X3 — [0, +0) by

S(y1,y2,¥3) = Zi3=1 Zi<j |Yi - le
forally; € X,i=1,2,3.
Lemma 2.5 (see [9]) Let (X, S) be an S-metric space. Then for all x,y € X,
Sxxy) =S(y,y,%).
Lemma 2.6 Let (X, S) be an S-metric space. Then for all x,y,z € X,
S(x,%x,z) < 2S(x,x,y) + S(y,y,z) and
S(x,%x,2) < 2S5(x,%,y) + S(z,2,y).
Definition 2.7 (see [9]) Let X be an S-metric space.

(i). A sequence {y,} converges to y if and only if S(y,,yn,y) = 0. That is for
each € > 0 there exists ny, € N such that for all n = ng, S(y,, yn,v) < €
and we denote this by

Yn =Y.

(ii). A sequence {y,} is called a Cauchy if S(y,, Yn, Vm) = 0. That s, for each
€ > 0 there exists n, € N such that for all n,m = ny, S(yp, Vn, Ym) < €.

(iii).X is called complete if every Cauchy sequence in X is a convergent.

From (see [9]), we have the following.
Example 2.8
(@). Let R be the real line. Then
S(X;y,z) = |X - Zl + |Y - Zl
forall x,y,z € R, is an S-metric on R. This S-metric is called the usual S-
metric on R. Furthermore, the usual S-metric space R is complete.
(b).Let X be a non-empty set of R. Then
Sxy,z) =[x—z| + |y —z

forall x,y,z € X, is an S-metric on X. If X is a closed subset of the usual

metric space R, then the S-metric space X is complete.
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Lemma 2.9 (see [9]) Let (X,S) be an S-metric space. If the sequence {y,,} in X
converges to y, then y is unique.
Lemma 2.10 (see [9]) Let (X, S) be an S-metric space. If
Yy =yand z, =z
Then
SO Y zn) =S, y,2).
Remark 2.11 It is easy to see that every D*-metric is S-metric, but in general the
converse is not true, see the following example.
Example 2.12 Let X = R™ and || . || anorm on X, then
Sy, z) =y +z—2x|| + |ly — z|
is S-metric on X, but it is not D*-metric because it is not symmetric.
The following lemma shows that every metric space is an S-metric space.
Lemma 2.13 Let (X, d) be a metric space. Then we have
(1).S4(x,y,z) =d(x,z) + d(y,z) forall x,y,z € X is an S-metric on X.
(2).x, =xin(X,d)ifandonlyif x,, = xin (X,S,).
(3). {xn};=q is Cauchy in (X, d) if and only if {x,, }—, is Cauchy in (X, S,).
(4).(X, d) is complete if and only if (X, S;) is complete.

Example 2.14 Let X = R and let
Sx,yv,z) =|y+z—-2x|+ |y — 2|
forall x,y,z € X. By ([9]), (X,S) is an S-metric space. Dung et al. [4] proved
that there does not exist any metric d such that
S(x,y,z) =d(x,z) +d(y, z)
forall x,y,z € X. Indeed, suppose to the contrary that there exists a metric d with
S(x,y,z) =d(x,z) +d(y, 2)
forall x,y,z € X. Then
d(x,z) = 35(x,x,2) = 2|x — z| and

1
d(xy) =5S5Cy,y) =2lx -y
forall x,y,z € X. Itis a contradiction.
In 2012, Sedghi et al. [9] asserted that an S-metric is a generalization of a G-metric,
that is, every G-metric is an S-metric, see [9, Remarks 1.3] and [9, Remarks 2.2].
The Example 2.1 and Example 2.2 of Dung et al. [4] shows that this assertion is not
correct. Moreover, the class of all S-metrics and the class of all G-metrics are
distinct.
Definition 2.15 (see [11]) Let (X, <) be a partially ordered set and let F: X — X
be a mapping. Then
1. elements y,z € X are comparable, if y < z or z < y holds;
2. anon empty set X is called well ordered set, if every two elements of it are
comparable;
3. Fissaid to be monotone non-decreasing w.r.t. <, ifforally,ze X,y <z
implies Fy < Fz;

16



INSPIRE ISSN: 2455-6742
Vol. 10, Nov. 2024 T May 2025, No. 01 ¢ 02 14-21

4. F is said to be monotone non-increasing w.r.t. <, ifforally,ze X,y < z
implies Fy > Fz.
3. Main Results
First, we introduce following definitions.
Definition 3.1 The triple (X, S, <) is called partially ordered S-metric spaces if
(X, <) could be a partial ordered set and (X, S) be a S-metric space.
Definition 3.2 If X is complete S-metric, then (X, S, <) is called complete partially
ordered metric space.
Definition 3.3 A partially ordered S-metric space (X, S, <) is called an ordered
complete (OC), if for each convergent sequence {y,} c X, the subsequent
condition holds: either
e if {y,} c X is a non-increasing sequence such that y, — y € X, then y, <
y,forall k € N, thatis, y =inf inf {y,}, or
e if {y,} c X is a non-decreasing sequence such that y, — y implies that
v s vy, forall k € N, thatis, y =sup sup {y,} .
The following is our first main outcome.
Theorem 3.1 Let (X, S, <) be a complete partially ordred S-metric space. Suppose
a self map F on X is continuous, non-decreasing and satisfies the contraction
condition

S(Fy, Fy, Fz) < q 3@2fS@zr2)

5072 + b[S(y,y,Fy) + S(z,z,Fz)]
+cS(y,y,2) (3.1)
foranyy # z € X withy < z, where a,b,c€ [0,1))with0<a+2b+c<1. If
Yo = Fy, for certain y, € X, then F has a fixed point.
Proof Define a sequence, y,.1 = Fy, fory, € X. If y, 41 = yi, for certain y, €
N, theny, is a fixed point F. Assume that y,,,; # y, for each k. But y, < Fy,
and F is non-decreasing as by induction we obtain that

VoS Y1 Yo S S Y S Ypwr S0 3.2)

By (3.1), we have

SOk Vi1, Yk) = SFyi, Fyr, Fyr—1)
<a SOV FYR)SVk-1.Yk-1,FVk—1)
- S YieYi-1)

+b[S Vi Vi FYi) + SOk-1 Vi1, FYi—1)1 + ¢S, Yier Yi-1)
SV Yr+1)SVk-1.YVk-1,YVE)

SWiYiYr-1)

+b[SWks Vi Vier1) + SOk—1, V-1, Vi) ] + Sk Vier Vie—1)
SWr+1Yr+1YR)S Vi Y Yk—1)

SWrYVieYk-1)
+b[SWk+1: Vi1, Vi) SO Yier Vi) + S Wier Yier Vie-1)
=(a+b)SWr+1,Yi+1,Yk) + (b + Sk, Yie» Vie-1)
which infer that
1—a-b

SWr+1 Y+, Vi) = ( )S(Yk'yk:Yk—l)
b+c

k
= (1_a_b) S YL Yo) < - (3.3)
17
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For m, k € N with m > k, by repeated use of (S3), we have

SO Vo Ym) < 28k Yio Yies1) + S O Ymo Yier1)
< 250V Vi Yie+1) + Skt 1 Y+ 1, Ym)
< 28k Yio Yier1) + 28 Vkes1 Yier 1 Yier2) + SO Yo Yies2)
< 2S5 Vi Y1) + 28 Yr1s Vw1 View2) T SOkw2s Vw20 SYm)
< 25V Yio Yk+1) T 25 Vka1s Vw1 Yi2) + 28 Vka2s Yiew2s Vier3)
+S (Vmo Ymo Vic+3)
< 2S5 Vi Y1) + 28 Yk ts Yier 15 Yiew2) + 28 Vkw2s Yier2s Yier3)
+2S V43 Vi3 Yiera) T+ 2SVm-2) Ym-2, Ym-1)
+S(Ym-1, Ym-1Ym)
< 2[A% + A+ -+ 2218 (Y0, Voo Y1) + AMTES (Yo, Yo, V1)
= 2/1’('[1 +A+22 4+ Am_k_z]S(YO:YO:)ﬁ) + Am_k_lS()’o:)’o'%)
<21+ 2+ 224+ 234+ 1S0, Vo, V1)

/1k
< ZESO’OJ’O:%) (3.4)

where 1 = 15;6-19' As k, m — oo in inequality (3.6), we obtain S(yx, ¥k, ¥m) = 0.

This shows that {y,} c X is a Cauchy sequence and then y, — u € X by its
completeness. Besides, the continuity of F implies that

Fu=F(Qy) =Fyx =Yg+1 =u
Therefore, u is a fixed point of F in X .
Extracting the continuity of a map F in Theorem 3.1, we have the below result.
Theorem 3.2 If X has an ordered complete (OC) property in Theorem 3.1, then a
non-decreasing mapping F has a fixed point in X.
Proof We only claim that Fu = u. By an ordered complete metrical property of X,
we have u =sup sup {y,} , for k€ N as y, > u € X is a non-decreasing
sequence. The non-decreasing property of a map F implies that Fy, < Fu or,
equivalently, v, 1 < Fu, for k = 0. Since, y, < y; < Fu and u =sup sup {y,}
as a result, we get u < Fu. Assume u < Fu. From Theorem 3.1, there is a non-
decreasing sequence F*u € X with F*u = ¢ € X. Again, by an ordered complete
(OC) property of X, we obtain that & =sup sup {F*u} . Furthermore, y, =
F¥yo, < F¥u, for k > 1 as a result, y, < Fku, for k > 1, since y, < u < Fu <
Fky, for k > 1 whereas y, and F¥u, for k > 1 are distinct and comparable.
Now we have the discussion below in the subsequent cases.
Case-1 If S(yx, i, F*u) # 0, then (3.1) becomes,

SWr+1) Ve, F¥H ) = S(F)’k» Fyy, F(Fku))
SOk Vi Fyi)S(FRu Fru,Frt1y)
S(VryiFru)
+b[SYi, Vi, Fyi) + S(FFu, FRu, F*1y)]
+CS(ykiyk'Fku)
_  SOkYiYis)S(FRu PRy pk+1y)
B S(YroyiFru)
+b[5(yk' ykfyk+1) + S(Fkukauka+1u)] + CS(yk.' yk.'Fku) (35)

<a
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As k — o in (3.5), we get

S(tu,u,g) < cS(u,u, &)
as a result, we have, S(u,u,e) =0. Hence u=¢. In particular, u=¢ =
sup sup {F*u} in consequence, we get Fu < u, a contradiction. Therefore,Fu =
u.
Case-2 Case-1 If S(yy, v, F¥u) = 0, then, S(u,u, €) = 0 as k — . By following
the similar argument in Case 1, we get Fu = u.
Corollary 3.1 Let (X, S, <) be acomplete partially ordred S-metric space. Suppose
a self map F on X is continuous, non-decreasing and satisfies the contraction

condition

S(Fy,Fy,Fz) < a3 S?y’ )j(ZZ)’Z’FZ) + bS(y,y,Fy) + cS(y,y,2) (3.6)
for any y # z € X with y < z, where a,b,c € [0,1)) with0<a+b+c<1. If
Yo = Fy, for certain y, € X, then F has a fixed point.
Proof. It follows by L = 0 in Theorem 3.1.
Corollary 3.2 Let (X, S, <) be acomplete partially ordred S-metric space. Suppose
a self map F on X is continuous, non-decreasing and satisfies the contraction

condition

S(Fy,Fy,Fz) < a3y SF(J; )j(zz)’Z’FZ) +cS(y,y,2) (3.7)
for any y # z € X with y < z, where L >0, and a,b,c € [0,1) with 0 < a +
2b + c < 1. If y, < Fy, for certain y, € X, then F has a fixed point.
Proof. Taking b = 0,L = 0 in Theorem 3.1, we obtain the desired result.
We conclude with an example.
Example 3.1 Let (R, S, <) be a totally ordered complete S-metric space with S-
metric defined as in Example 2.8 (a). Let F: R — R be a map defined by F(y) =

32473 forall m > 1. It is evident that F is continuous and non-decreasing in R

and y, = 0 € R such that y, = 0 < Fy,. Takinga=0,b=0,c=%. Fory < z,

we have
S(Fy,Fy,Fz) = 2|Fy — Fz|
—9 |3y+24n—3 _ 3z+24n—3|
24n 24n
_ |3(y—2) 1 |E
24n nl 4

1 1
S-ly-zl=-50y.2)

e n TSy, Fy)+5(z2F2)]

+cS(y,y,2)
holds for every y,z€ R. For L > 0 and a,b,c € [0,1) such that 0 < a + 2b +

¢ < 1, in particular, if we takea = 0,b = O,czi,then03a+2b+c < 1and

1 € R is a fixed point of F as all the conditions of Theorem 3.1 are satisfied.
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Abstract
Our aim is to introduce the desire of a Parametric Super Metric and study
some basic properties of Parametric Super Metric Spaces which is a generalization
of Parametric and Super Matric Space We give some fixed-point results on a
complete Parametric Super Metric Space. Some illustrative examples are given to
show that our result are valid.

1. Introduction:

A fixed point of a function is a point that stays fixed by the application of
the function. Fixed points, which can be considered as equilibrium states or
solutions to equations, have important applications in many mathematical areas,
such as numerical analysis, optimization, and dynamical systems. An example
involves numerical methods, where finding a fixed point by iteration can also be
relevant to solving the equation that one is iterating.

One of the fundamental results in the theory of metric spaces is the Banach
Contraction Principle, the Contraction Mapping Theorem. Informally, it states
under which conditions a mapping from a metric space into itself admits a unique
fixed point. This theorem applies to many different areas: functional analysis,
numerical methods, optimization-the name really is apt, being used to prove
convergence of an iterative process and to guarantee existence and unigqueness of
solutions of equations. Since then, the Banach contraction principle has been
extraordinarily generalized (refer to [1-15]).

Then, Kannan [10] in 1968 introduced an important alteration to the
theorem removing the continuity, an important step in the development of metric
fixed-point theory, after which the Kannan theorem has been considered in several
generalizations.

It was another prominent one put forward by Dass and Gupta [2], wherein
the notion of Rational Contraction has been introduced. In contrast to the classical
Banach contraction, which strictly relied on a constant contraction factor, their
method allowed the contraction condition to be expressed in terms of rational
functions to provide more flexibility. This very broad paradigmatic framework
ensures the existence and uniqueness of fixed points using rational functions'
properties and the completeness of the underlying metric space.
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Also, Fulga and Karapinar [4] presented the notion of a super-metric space,
which gave birth to new fixed-point theorems. Through this novel idea, some
limitations such as congestion and stringent constraints encountered in previous
works could be resolved.

In super metric space, we establish some common fixed-point theorems for
rational contractions. These theorems expand and generalize several intriguing
findings from metric fixed-point theory to the super metric setting. Furthermore,
we present an example to illustrate our theorems.

2. Preliminaries:
First, we recall the basic results and definitions.
Definition 2.1 (see [5]) Consider X to be a non-empty set. A functiond: X X X —
[0, +0) is considered a super metric if it fulfills the subsequent axioms:

(s1). Vx,ye X, ifd(x,y) =0= x =y.

(s2). Vx,y e X,d(x,y) =d(y,x).

(s3). There exists s = 1 such that for every y € X, there exist distinct sequences

{x;},{y;} € X, with d(x;,y;) = 0 when i - oo, such that
d(yuy) < Sd(xily)
The tripled (X, d, s) is called a super metric space.
Definition 2.2 (see [5]) A sequence {x;} on a super metric space (X, d, s):
1) convergestox € X & d(x;,x) = 0.
2) isa Cauchy sequence in X < {d(x; x;):j > i} = 0.
Proposition 2.3 (see [5]) The limit of a convergent sequence is unique on a super
metric space.
Definition 2.4 (see [5]) A super-metric space (X, d, s) is called complete iff each
Cauchy sequence is convergent in X.
Theorem 2.5 (see [5]) Let (X,d,s) be a complete super-metric space and let
G:X — X be a mapping. Suppose that 0 < ¢ < 1 such that
d(Gx,Gy) < cd(x,y)

forall (x,y) € X. Then, G has a unique fixed point in X.
Theorem 2.6 (see [5]) Let (X, d, s) be a complete super metric space and G: X — X
be a mapping, such that there exist ¢ € [0, 1) and that

d(x,6x)n(y,Gy)
d(Gx, Gy) < c{d(x,y), L)

Then, G has a unique fixed point.

3. Main Results

Our first main result as follows.

Theorem 3.1 Let (X, d, s) be a complete super-metric space and let F, G be self-
mappings of X. If there exist real numbers k,, k, = 0 with k; +2 k, < 1 such

that

d(Fx,Gy) < kl%ggf”+ k,[d(x,y) +d(x, Fx)]  (3.1)

for all x,y € X. Then, F and G have a unique common fixed point in X.
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Proof. Let x, € X and we define the class of iterative sequences {x;} such that
Xiy1 = Fx;, xi4, = Gx;,4 forall i € N. Without loss of generality, we assume that
Xi+2 # Gx;4q for each nonnegative integer i. Indeed, if there exist a nonnegative
integer i, such that x; 4, = Gx; .1, then our proof of the Theorem proceeds as
follows. Thus, from (3.1), we have
0 < d(xis1,Xi42) = Ad(Fx;, Gxyyq)
< ks d(xuiil;?z;zgxm) + ko[d(x, xi41) + d(x;, Fxp)]
= Joy TEELLEIIAD) 1 91 d (i, Xi41)
< kd(Xigq, Xig2) + 2kd (g, Xi44)
The last inequality gives

2k
0 < d(Xir1, Xit2) S 77 A0 Xip1) = €1 A0, Xi41)

2k . .
where ¢; = 7 ,: . From this, we can write
- R1
0 < d(Xip1,Xi12) < ¢ d(Xy, Xppq) < €12 d(Xi_q, %) < - < 0" d (%, %) (3.2)

On the other hand, one writes
0 <d(xi11,%) = d(FJ(Ci: Gx)i—(l) )
d(x;,Fx;)d(xj—1,GXi—1
< ks T+d(er) + ka[d(x;, x;-1) + d(x;, Fx;)]
d(xixiz1)d(xi_q1,x;)
= ky 1+;(1xi.xi—1)1 + kp[d(x;, xi-1) + d(xg, Xi44)]

(ky + kp)d(x;, xi41) + kod(x;,x-1)

IA

which yields that,
ko
0 <d(xiv, %) < 505
And then, we can write

0 < d(xXi41) < €2 d(xpx-1) < 62 d(Xi_1,%1-2) < -+ < 6" d(x0, %) (33)

Set ¢ = {cy, c,} . By appealing to (3.2) and (3.3), we find that

d(x;, xi—1) = ¢ d(x;, x-1)

0 < d(xy,xi41) < ¢ d(xg,x1) (3.4)
Taking the limit i tends to infinity in inequality (3.4), we get
d(x;,xi41) = 0. (3.5)

In what follows, we want to show that the sequence {x;} is a Cauchy sequence.
Now suppose that, i,j € N with i > j.Then from inequality (3.5) and using (s3),
we get
sup sup d(x;, Xi42) < Ssup sup d(Xj4q1,Xip2) < SSupsup {c“’l d(xo,xl)} (3.6)
Hence, sup sup d(x;, x;,,) =0.
Similarly, we have
sup sup d(x;, Xi43) < s sup sup d(Xi4o,Xi43) < s sup sup {c*? d(xp,x1)} (3.7)

Inductively, one can conclude that sup sup { d(x;,x;):i > j} = 0. Thus,
{x;} is a Cauchy sequence in a complete super-metric space (X, d, s), the sequence
{x;} converges to x* € X and then d(x;, x*) = 0. Further, we show that x* is the
fixed point of F and G. If not, x* # Fx* # Gx*, and then d(x*, Fx*) > 0 and
d(x*,Gx*) > 0. Note that

24



INSPIRE ISSN: 2455-6742
Vol. 10, Nov. 2024 T May 2025, No. 01 ¢ 02 22-28

0< d(xi+2'FX*) = d(FX*'xi+2) = d(FX*'Gxi+1)

d(x*,Fx*)d(xi+1,GXi41) B . .
= kl 1+d(x*x41) + kZ[d(x ;xi+1) + d(x ,Fx )]

= I TS 4 o[, i) + A, FxO)]
Taking i — oo, we derive sup sup d(x;.,, Fx*) < 0. Thus, we have,

0 <d(x*,Fx*) <sup sup d(x;4,, Fx*) <0 (3.8)
and one can conclude that d(x*, Fx*) = 0, which implies that Fx* = x*.On the
other hand,

0 <d(x;42,Gx*) =d(Fx;.,,Gx")
d(xiy1,Fxip1)d(x*,Gx™)
S k1 1+d(xj41,x%)
1+1 A .
= kq d(xlizl&ii:*)'cx ) + ko[d(xip1, x7) + d (x40, Xi12)]
Taking i - oo, we derive sup sup d(x;4,,Gx*) < 0. Thus, we have,
0<d(x*,Gx*) <sup sup d(x;4,,Gx*) <0 (3.9)
and one can conclude that d(x*, Fx*) = 0, which implies that Gx* = x*. Hence,
x* is a common fixed point of F and G. We shall now prove the uniqueness of x*.
Suppose there exists another point y* € X such that Fy* = Gy* = y*. Then, by
inequality (3.1), we have
d(Fx*,Gy") < ky dix ;Ffdzjfz*’fy ) 4 ko[d(x*,y*) +d(x*, Fx*) |

< k,d(x*,y*) <d(x*,y") (3.10)
which is a contradiction.
If we take F = G in condition (3.1), then we obtain the following corollary.
Corollary 3.2 Let (X, d, s) be a complete super-metric space and let F be a self-
mapping of X. If there exist real numbers k,, k, = 0 with k; + 2k, < 1 such
that

+ kold (x40, x7) + d (x50, FXi41)]

d(Fx, Fy) < k1%+ ko [d (e, y) + d(x, Fx)] (3.11)
forall x, y € X. Then, F has a unique fixed point in X.
If we take k; = 0 in Theorem 3.1 and Corollary 3.2, respectively, then we obtain
the following corollaries.
Corollary 3.3 Let (X, d, s) be a complete super-metric space and let F, G be self-
mappings of X. If there exists real number 0 < k, < 1 such that

d(Fx,Gy) < ky[d(x,y) + d(x, Fx)] (3.12)
for all x,y € X. Then, F and G have a unique common fixed point in X.
Corollary 3.4 Let (X,d, s) be a complete super-metric space and let F be a self-
mapping of X. If there exists real number 0 < k; < 1 such that

d(Fx,Fy) < kid(x,y) (3.13)
for all x,y € X. Then, F has a unique fixed point in X.
We give an example which satisfy the conditions of Theorem 3.1.

Example 3.5 Let s = 1, and the function d: [0, 1] x [0, 1] — [0, +0) be defined
as follows:
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d(x,y) = xy forall x # y,and x,y € (0, 1);

d(x,y) =0forall x =y,and x,y € [0,1];

d(0,y) =d(y,0) =y forall y € (0,1];

d(1,y) =d(y,1) =1 —Zforally € [0,1);
First, we claim that d is super-metric on [0, 1]. We will concentrate on (s3) because
(s1) and (s2) are simple to confirm. For any y € (0,1), we can choose the
sequences {x;},{v;} < [0, 1], where

i2+1 i+1
i = Ty and yil_ Ty foranyn € N.
. i2+1 1+
Since X; = - =—Z -1
i2+2 1+
and e i — 1_+% =0
YeTEe Ty T

1 1
241 i+1 1tz 1+ 0

i2+2 242 1+2 (142
145 i(1433)

Then, we have d(x;,y;) =xy; =
Thus,

i2+1
sup sup d(x;,y) =sup sup x;y =Sup sup y

i2+2
B 41 B
=y sup sup 212 =Y

sup sup d(y;,y) =sup sup y;y =sup sup {( %) y}
i+1
Therefore, sup sup d(y;,y) =0<y=ssupsup d(x;y),and (s3) holds.
If y = 0, using the same sequences, we get

i“+1
sup sup d(x;,y) =sup sup x; =sup sup 2 +12 =1,
i+
sup sup d(y;,y) =sup sup y; =sup sup T 0,
Therefore, sup sup d(y;,y) =0<1=ssupsup d(x;,y), and again (s3)
holds.

If y = 1, using choosing x; = ——

and y; = E foranyn € N. Then

L i+3
i+ i+
xi—i2+2—0andyi—§—1.
Then, we have
i+1 i+2
d(x;,yi) =xy; = :2? ;_3 =
Thus, sup sup d(x;,y) =sup sup (1 — %)
i+1 21 —i+3
=Ssup sup (1 - m) =Sup sup m =1,
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i+ 2
sup sup d(y;,y) =sup sup (1 — %) =sup sup ( G+ 3)>
i+4 1

—SUPSWP o3 T 2
Therefore,  sup sup d(y;,y) = % <1=ssupsup d(x;,y) ,
and again (s3) holds. Hence, d defines a super-metric on [0, 1]. Define mappings
F,G:[0,1] - [0,1] as
Fx =% ifx € [0,1) and Fx = — if x = 1,

Gx =% ifx € [0,1) and Gx = 5, if x = 1.
1

Taking ky =z, k; = 2

We consider the following cases:
1. Ifx,y € (0,1), we have

1 x2y? 1
d(Fx,Gy)=d(§,§)=%£6(§+—zw+5(xy+xz)
< k

dxFodly 6y) + ky[d(x,y) + d(x, Fx)]
2. Ifx=0,y € (0,1), we have

1+d(x,y)
_ _ Nyl g2 1
d(Fx,Gy) = d(F(z,Gy)) - d)(O,z) =2<2y+20+:L 420
d(x,Fx)d(y,G
< lex;)y + ky[d(x,y) + d(x, Fx)]
3. fx=0,y=0,0orx=1,y=1,wehave
d(Fx,Gy) =0 < %d(x,y) + %d(x, Fx) + %d(y, Gy) +
1d(x,Fx)d(y,Gy) d(x,Fx)d(y,Gy)
5T ity = Mg,y T keld(y) +d(x, Fx)]
4. Ifx =0,y =1, we have
_ _ 1y _ 1 _1 1 11 1 (0)(%)
d(Fx,Gy) = d(FO, G(l) —) C(Z(O,)g) =3 < 5(1) +§(0) + P + S I3l
d(x,Fx)d(y,G
= kTt keld(xy) + d(x, Fx)]
5 Ifx =1,y € (0,1), we have
1

1 1
d(Fx,Gy) = d(F1,6y) =d (= 2) =2 <1y + 1l 420! 32y
< ky

d(x,Fx)d(y,Gy)
Ty T keldCuy) +dCx Fx)]

In view of Theorem 3.1, we conclude that F and G have a uniqgue common
fixed point 0 € [0,1].
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Abstract

In this paper, we establish a fixed point theorem for contraction-type
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conventional contractive conditions and broadening the scope of applicability in
nonstandard metric structures.
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1. Introduction

The notion of a generalized metric space, introduced by Branciari [4],
replaces the standard triangle inequality of a metric space with a more general
inequality involving four points instead of three. Every metric space is a generalized
metric space, but the converse does not hold Branciari [4]. Within this framework,
Branciari established the well-known Banach fixed point theorem, and subsequent
studies have further generalized his result. This naturally raises the question of
whether other classical fixed point theorems—particularly those not strictly
dependent on contraction mappings can also be extended to generalized metric
spaces. In this paper, we explore this possibility by focusing on such results and
establishing a fixed point theorem that extends existing results through slight yet
meaningful generalizations suited for these broader spaces.

Specifically, we generalize the result of Saluja [14], by employing a more
flexible inequality condition, thereby broadening the applicability of fixed point
results in the context of generalized metric spaces.

2. Preliminaries
Following definitions are required in the sequel.
Throughout, the letters R and N will denote the set of all non-negative real numbers
and the set of all positive integers respectively.
Definition 2.1: Let X be a setand d: X> — R* a mapping such that for all x, yeX
and there exist a point conditions. X. different from x and y, one has following

(i) d(x,y)=0ifandonlyifx = y

(i) d(x,y) = d(y.x)

@ii)d(x,y) < d(x.z) + d(z.y)
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Then we will say that (X, d) is a metric space.
Definition 2.2: Let X be a set and d: X> -» R* a mapping such that for all
x,y € X and for all distinct point x4, x5, x3, ....., x, € X. cach of them different from
x and y. one has

(1) d(x,y)=0ifandonlyifx = y

(i) d(x,y) = d(y.x)

(i) d(x,y) <d(x.xy) +d(xq,x32) + .+ d(xp_q1,x,) +d(x,,y) Then we

will say that (X.d) is generalized metric space (or shortly g.m.s.)
Definition 2.3: 1.et (X.d) be a g.m.s. A sequence {x,} in X is said to be a Cauchy
sequence if forany w > 0 thereexistn € N such that for all m,ne N, n < m, one
has d(x,, xn+m) < €. Then (X.d) is called complete if every Cauchy sequence in
X is convergent in X.
Let T:X— X be a mapping where X is a g. m. s. for each x € X
0(x,0) = {x,Tx,T*x ...}

Definition 2.4: X is said to be T-orbitally complete if and only if every Cauchy
sequence which is contained in O(x, o) for some xeX converges in X.
Definition 2.4: X is said to be T-orbitally complete if and only if every Cauchy
sequence which is contained in O(x, o) for some xeX converges in X.

3. Main Result
Theorem 3.1 Let (X,d)be a metric space.lf T: X — X is a mapping such that

d(Tx,Ty) < B [d(x, Tx)+ d(y,Ty) + d(x,Ty) + d(y,Tx) + dxy)[i+dxly)] ]

1+d(x,Ty)
..(3.1.1)
1
holds for all x,y € Xwhere(0 < f < o
and if X is T — orbitally complete,then T has a unique fixed point in X.

Proof:
Let x € X.Now using (3.1.10)withy = Tx:d(Tx,T?*x)

< B [d(x, Tx) + d(Tx,T?x) + d(x,T?x)

d(x, Tx)[1 + d(x, T%x)] )
+ T+ AT l = d(Tx, T*x)(1 — B)
< Bl2d(x,Tx) + d(x,T?x)] = d(Tx,T?x)(1 — 2p)
< 38d(x,Tx)
= d(Tx,T?x)) < ((1f‘2”m)d(x,7"x) - (3.1.2)

Again using (3.1.1)for T?x and T3x:
d(T?x,T3x) < B [d(Tx,sz) + d(T?x,T3x) + d(Tx,T3x)

d(Tx, T?x)[1 + d(Tx,T3x)]
1+d(Tx,T3x)
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= d(T?x,T3x)(1 — B) < B[2d(Tx,T?*x) + d(Tx,T3x)]
= d(T?x,T3x)(1 — 2B) < 38d(Tx,T*x) = d(T?x,T3x)
<

36 )
————)d(Tx, T?x)Using (3.1.2)again: d(T?x, T3x
() T 1) Using (31.2)again: (1 %)
38\ N
< (1 —2,8) d(x,Tx) ....(3.3.1)By induction, we get: d(T"x, T"*1x)
3B
< " =
< r"d(x,Tx) wherer (1—2/3)

1Hence,{T"x}is a Cauchy sequence.Let m > n,then:d(T"x, T™x)
d(Tx, T"*1x) + d(T"*1x, T""2x) + ... + d(T™ 1x, T™x)

dCe, TX)(™ + ™1+ .+ r™ Dletm = n + p,then:d(T"x, T™x)
d(x, Tx)[r™ + r™t1 + ... + r"tP71]

d(x,Tx)* r™ wl < d(x,Tx) * (1r

(1-7)
oo, {T"x}is a Cauchy sequence. Since X is T — orbitally complete, letT"x
u.Now using (3.1.1): d(u, Tu)
d(u, T"x) + d(Tx, T"*x) + ... + d(T?* 1x,T?"x) + d(T?*"x,Tu)
Again by (3.1.1):d(u, Tu)
< dw,Tx) + .. + Bld(T? 1x,T?"x) + d(u,Tu) + d(T" 1x,u)]
= dw,Tu)(1 — B) < dw,T"x) + ... + B d(T" 1x,u)Taking limit n
- oo:d(u,Tu) < 0 = u
= TuHence,u is a fixed point of T.Uniqueness: Let v be another fixed point,i.e.,Tv
= v.Using (1)withx = uandy = v
d(Tu, Ty) < B [d(u, Tu) + d(v,Tv) + d(u,Tv) + d(v,Tu) + %jﬁ;ﬁn]

d(u,v) = d(Tu,Tv) < Bld(w,u) + d(v,v) + d(u,v) + d(u,v) + d(u,v)]

= 38d(u,v) = du,v)(1 — 38) < 0Since0 < B <%

= d(u,v) = 0 = u = vHence,the fixed point is unique.
Corollary 3.2. Let (X,d)be a metric space,If T:X
— X be a mapping such that
d(Tx,Ty) < Bld(x,Tx) + d(y,Ty) + d(x,Ty)]

1
holds for all x,yeX where 0 < f < T

and if X is T — orbitally complete then T has a unique fixed point in X.
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Abstract

The goal of this paper is to define rational contraction in the context of S-
metric spaces and develop various fixed-point theorems in order to elaborate,
generalize, and synthesize a number of previously published results. Finally, to
illustrate the new theorem, an example is given.

1. Introduction:

Fixed point theory is crucial in science and mathematics. This topic has
drawn a lot of interest from academics in the last two decades due to its wide range
of applications in disciplines such as nonlinear analysis, topology, and engineering
difficulties. The Banach contraction principle [6] is the starting point for most
generalizations of metric fixed point theorems. It's difficult to enumerate all of this
principle’s generalizations. The Banach fixed-point theorem [6] ensures the
existence and uniqueness of fixed points of particular self-maps of metric spaces,
as well as a constructive approach for discovering them. The S-metric space was
introduced by Sedghi et al. [30]. It's a three-dimensional space called the S-metric
space. The concept of A-metric space was established by Abbas et al. [2], which is
a generalization of S-metric space. Jaggi [2], Das and Gupta [13] discovered the
fixed-point theorem for rational contractive type conditions in metric space. The
goal of this section is to define rational contraction in the setting of S-metric spaces,
as well as to create various fixed-point theorems to elaborate, generalize, and
synthesize several previously published results. Finally, an example is given to
demonstrate the new theorem.

2. Preliminaries:

Some valuable information and ideas will be presented in this section.
Metric spaces are very important in mathematics and applied sciences. So, some
authors have tried to give generalizations of metric spaces in several ways. Sedghi
et al. [29, 31] introduced the notion of a D*-metric space as follows.

Definition 2.1 (see [29, 31]) Let X be a non-empty set. A D*-metric on X is a
function D*:X3 — [0,+) that satisfies the following conditions, for each
X,y 7za€X;

(D*1). D*(x,v,2) = 0,

(D*2). D*(x,y,z) = Oifand only if x = y = z.

(D*3). D*(x,y,z) = D*{x,y, z} (Symmetry in all three variables),

(D*4). D*(x,y,z) < D*(x,y,z) + D*(a, z, 2).
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Then D* is called a D*-metric on X and (X, D*) is called a D*-metric space.
Definition 2.2 (see [3]) Let X be a nonempty set. A mapping S: X3 — [0, +o0) is
called an S-metric on X if and only if for all x, y, z, a € X, the following conditions
hold:

(S1). S(x,y,2) =0,

(S2). S(x,y,z) =0ifandonlyifx =y =z,

(S3). S(x,y,2) <S(x,x,a) +S(y,y,a) +S(z,z,a)
The pair (X, S) is called an S-metric space.

The following is the intuitive geometric example for S-metric spaces.
Example 2.3 (see [3]) Let X = R? and d be the ordinary metric on X. Put
S(x,y,z) = dx,y) +d(x,z) + d(y,2)

forall x,y,z € X, that is, S is the perimeter of the triangle given by x,y,z. Then S
is an S-metric on X.
Example 2.4 Let X = [1,+o0) . Define S: X3 — [0, +0) by

SYuYy2Y3) = Zi3=1 Zi<j |3’i - }’jl
forall y; € X,i = 1,2,3.
Lemma 2.5 (see [3]) Let (X, S) be an S-metric space. Then forall x,y € X,
S(x,x,y) =S¥y, x).
Lemma 2.6 Let (X, S) be an S-metric space. Then forall x,y,z € X,
S, x,2z) <250, x,y)+S(y,y,z) and
S(x,x,2) <25(x,x,y) +S(z,2,y).
Definition 2.7 (see [3]) Let X be an S-metric space.
(i). A sequence {y,,} converges to y if and only if S(y,, y,,y) = 0. That
is for each e > 0 there exists n, € N such that for all n>
Ny, S, Y, ) < € and we denote this by
Yn =Y.
(ii). A sequence {y,} is called a Cauchy if S(v,, ¥, V;n) = 0. That is, for
each €>0 there exists no € N such that for all n,m >
0, S(Yn, Yn» Yim) < €.
(iii). X is called complete if every Cauchy sequence in X is a convergent.
From (see [3]), we have the following.
Example 2.8
(a). Let R be the real line. Then
S,y z) =|x—zl+ |y —z|
for all x,y,z € R, is an S-metric on R. This S-metric is called the usual S-
metric on R. Furthermore, the usual S-metric space R is complete.
(b).Let X be a non-empty set of R. Then
S(x;y,z) = |X _ZI + |y _Zl
for all x,y,z € X, is an S-metric on X. If X is a closed subset of the usual
metric space R, then the S-metric space X is complete.
Lemma 2.9 (see [3]) Let (X,S) be an S-metric space. If the sequence {y,} in X
converges to y, then y is unique.
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Lemma 2.10 (see [3]) Let (X, S) be an S-metric space. If
vy, =yand z, =z
Then SO Y zn) =SO,y,2).
Remark 2.11 It is easy to see that every D*-metric is S-metric, but in general the
converse is not true, see the following example.
Example 2.12 Let X = R™ and || . || a norm on X, then
Sy, z) =y +z—2x|| + |ly — z|
is S-metric on X, but it is not D*-metric because it is not symmetric.
The following lemma shows that every metric space is an S-metric space.
Lemma 2.13 Let (X, d) be a metric space. Then we have
(1).S4(x,y,2z) =d(x,z) + d(y,z) forall x,y,z € X is an S-metric on X.
(2).x, =xin(X,d)ifandonlyif x,, = xin (X,S,).
(3).-{xn}n=q is Cauchy in (X, d) if and only if {x,, };—, is Cauchy in (X, Sy).
(4).(X,d) is complete if and only if (X, S,;) is complete.

Example 2.14 Let X = R and let
S, y,z) =|ly+z—-2x|+ |y —z|
for all x,y,z € X. By ([3]), (X,S) is an S-metric space. Dung et al. [15] proved
that there does not exist any metric d such that
S(x,y,z) =d(x,z) +d(y, z)
forall x,y,z € X. Indeed, suppose to the contrary that there exists a metric d with
S(x,y,z) =d(x,z) +d(y, z)
forall x,y,z € X. Then
d(x,2z) = 35(x,x,2) = 2|x — z| and

1
d(xy) =5S5Cy,y) =2lx -y
forall x,y,z € X. It is a contradiction.

In 2012, Sedghi et al. [30] asserted that an S-metric is a generalization of a
G-metric, that is, every G-metric is an S-metric, see [30, Remarks 1.3] and [30,
Remarks 2.2]. The Example 2.1 and Example 2.2 of Dung et al. shows that this
assertion is not correct. Moreover, the class of all S-metrics and the class of all G-
metrics are distinct.

Definition 2.15 (see [13]) Let (X, <) be a partially ordered setand let T: X — X be
a mapping. Then
1. elements y,z € X are comparable, if y < z or z < y holds;
2. anon-empty set X is called well ordered set, if every two elements of it
are comparable;
3. T issaid to be monotone non-decreasing w.r.t. <, ifforall y,z € X,y <
zimpliesTy <X Tz;
4. T issaid to be monotone non-increasing w.r.t. <, ifforall y,z € X,y <
zimpliesTy > Tz.
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3. Main Results
First, we introduce following definitions.
Definition 3.1 The triple (X, S, <) is called partially ordered S-metric spaces if
(X, <) could be a partial ordered set and (X, S) be a S-metric space.
Definition 3.2 If X is complete S-metric, then (X, S, <) is called complete partially
ordered metric space.
Definition 3.3 A partially ordered S-metric space (X, S, <) is called an ordered
complete (OC), if for each convergent sequence {y.} c X, the subsequent
condition holds: either
e if {y,} c X is a non-increasing sequence such that y, — y € X, then
v =y, forall k € N, thatis, y =inf inf {y;}, or
e if {y,} c X is a non-decreasing sequence such that y, — y implies that
v =y, forall k € N, thatis, y =sup sup {y,}.
The following is our first main outcome.
Theorem 3.4 Let (X, S, <) be a complete partially ordred S-metric space. Suppose
a self map T on X is continuous, non-decreasing and satisfies the contraction
condition

S(Ty, Ty, Tz) <a Sy 'ST(z);(ZZ)’Z’TZ) + bS(y,y,Ty) + cS(z,2,Tz)

+dS(y,y,z) (1.3.2)

forany y # z € X with y < z, where a, b, c,d € [0,1) with
0<a+b+c+d<1.
If yo < Ty, for certain y, € X, then T has a fixed point.
Proof Let y,€X be arbitrary and define a sequence {y,} by
Vi+1 = TV I Y 41 = yi, for certain k, € N, then y, is a fixed point T'.
Assume that y, ., # y, for each k. But y, < Ty, and T is non-decreasing as by
induction we obtain that
VoSY1 SV, S S Y S Ypyr S0 (1.3.2)

By (1), we have
SW Y TYI)S Vi-1.Yk-1.TVk-1)
SWr+1 Vierr Vi) = STV, TYi, Tyr—1) < a =2k S?Yk:)’::)’jc—lk) L oht

+bS Vi Yie Tyi) + €S V-1, V=1, TYk—1) +ASVks Yie» Yie—1)
SWrYVieYk+1)SVi—1,Yk-1Vi)

SV Yk—-1)

+bS Vi Yier Yi+1) + €S V-1, Yk—1, Vi) +ASWks Yie» Yie—1)
SWk+1.Yk+1Y1)S VY Vie—1)

SWVrYrYi-1)
+bS Vi+1, Yie+1, Vi) + SV Vi Yi-1) + AS Vs Vi Yie—1)
= (a+ b)SWr+1, Y+, Vi) + (¢ + DSk, Yi» Yie—1)
which infer that

+d
SWke1r Y+ Vi) < (1ia_b)5(:Vk'yk'yk—1)
7 Nk
< (==%) SOy Ye) < - (133)

1—a-b
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For m, k € N with m > k, by repeated use of (S3), we have
Sk Yo Ym) < 28V Vier Vier1) + S Vs Yins Yier1)
< 2S5 Vi Yi+1) + SWks1) Vit 1) Ym)
< 25 Vi Yk+1) + 2SYir1s Yier 1 Yiew2) + SO Yims Yica2)
< 2S(Vis Vi Yier1) + 28 Vit View 1 Yier2) +SYia2s Yicw2s S¥m)
< 2S5k Vi Yie+1) T 25V 1 Yier 1 Yier2)
+25Vkr2s Y20 Yi+3) T SVms Yo Yie+3)
< 25k Vio Yi+1) + 25k 15 Vi1, Ye+2) + 28 Vis2) Vier2s Vie+3)
+25Vir3: Vi3 Yira) 0+ 2SVm-2, Ym-2, Ym-1) + SWm—1, Ym—-1, Yim)
< 202 + 2 4 o+ A 218 (0, Y0, ¥1) A IS (Yo, Yo, 1)
= 2/1k[1 + A+ /12 + -+ Am—k—Z]s(yO,yO'yl) + Am_k_ls(yoryO'yl)
<21+ 2+ 22+ 23 + - 1S(Vo, Vo, Y1)

lk
< 21_/15(3’0:3’0»371) (1.3.4)
where A = — in inequality (1.3.6), we obtain S(y, Vi, Vm) =

0. This shows that {yk} c X is a Cauchy sequence and then y, — y € X by its
completeness. Besides, the continuity of T implies that
Ty=TWk) =TYx =Yks1 =Y

Therefore, y is a fixed pointof T in X .

Extracting the continuity of a map T in Theorem 1 of 1.2.3, we have the
below result.
Theorem 3.5 If X has an ordered complete (OC) property in Theorem 1 of 1.2.3,
then a non-decreasing mapping T has a fixed point in X.
Proof We only claim that Ty = y. By an ordered complete metrical property of X,
we have y =sup sup {y,} , for k€ N as y, » y € X is a non-decreasing
sequence. The non-decreasing property of a map T implies that Ty, < Ty or,
equivalently, vy, < Ty, for k = 0. Since, y, < y; < Ty and y =sup sup {y,}
as a result, we get y < Ty. Assume y < Ty. From Theorem 1 of 1.2.3, there is a
non-decreasing sequence T*y € X with T¥y = ¢ € X. Again, by an ordered
complete (OC) property of X, we obtain that ¢ =sup sup {T*y} . Furthermore,
yi = T*y, < T*y, for k > 1 as a result, y, < Ty, for k > 1, since y, < y <
Ty < T*y, for k > 1 whereas y, and T*y, for k > 1 are distinct and comparable.
Now we have the discussion below in the subsequent cases.
Case-1 If S(yx, vk, T®y) # 0, then (1) becomes,

SWirss Vierrs T1y) = S(Tyi, Ty, T(T*y) )
SOV TYR)S(TEy,Tky, T** 1y)
SYryeT*y)
+bS Vi Vi Tyi) + cS(T*y, T*y, T**1y) +dS(Yi, Y1, T*y)
SOk Y Vk+1)S(TRy TRy, TR+ 1y)
Sy T*y)
+bS Vs Vi View1) + €S(THy, T*y, Tk+1y)
+dS Wi, Vi T*Y) (1.3.5) ;
7

<a




INSPIRE ISSN: 2455-6742
Vol. 10, Nov. 2024 T May 2025, No. 01 ¢ 02 33-40

As k — o in (1.3.5), we get

S, y,&) <dS(y,y,€)
as a result, we have, S(y,y,e) =0. Hence y =¢. In particular, y =¢ =
sup sup {T*y} in consequence, we get Ty < y, a contradiction. Therefore, Ty =
y.
Case-2 If Sy, vk, T¥y) = 0, then, S(y,y,&) = 0 as k —» oo. By following the
similar argument in Case 1, we get Ty = y.
Corollary 1 Let (X, S, <) be a complete partially ordred S-metric space. Suppose
a self map T on X is continuous, non-decreasing and satisfies the contraction

condition

S(Ty,Ty,T7) < @220 4 p[S(y,y, Ty) + 5(2,2,T2)]

+dS(v,y,7) (1.3.6)

foranyy # z € X withy < z, where a,b,c € [0,1) with0 < a+2b+d < 1. If
vo < Ty, for certain y, € X, then T has a fixed point.

Proof. It follows by b = ¢ in Theorem 1 of 1.2.3.
Corollary 2 Let (X, S, <) be a complete partially ordred S-metric space. Suppose
a self map T on X is continuous, non-decreasing and satisfies the contraction
condition

Sy, Ty)S(z,2,Tz)
<
S(Ty, Ty, Tz) < a Som2) +dS(y,y,2) (1.3.7)

for any y # z € X with y < z, where L > 0, and a,d € [0,1) with0 < a+d <
1. If y, < Ty, for certain y, € X, then T has a fixed point.

Proof. Taking b = c = 0 in Theorem 1 of 1.2.3, we obtain the desired
result. We conclude with an example.
Example 3.6 Let (R,S,<) be a totally ordered complete S-metric space with S-
metric defined as in Example 8 (a) of 1.2.2. Let T: R — R be a map defined by

T(y) = % for all n> 1. It is evident that T is continuous and non-
decreasing in R and y, = 0 € R such that y, =0 < Ty,. Takinga =0,b =c =
1
0,d = ~ For y < z, we have
S(Ty,Ty,Tz) = 2|Ty — Tz|
—9 |3y+24n 3 3z+24n-— 3|
24n 24n
—9 |3(y z) |
1 24n
<=ly—zl=-50,y,2)

<a w+ bS(y,y,Ty) + cS(z,2z,Tz)
+dS(y,y, z)
holds for every y,z€ R. For L >0 and a,b,c,d € [0,1) such that 0 < a+ b +
c+d < 1,inparticular, ifwetakea = 0,b =c =0,d :%,then 0<a+b+c+

d <1and1 € Ris a fixed point of T as all the conditions of Theorem 1 of 1.2.3
are satisfied.
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Abstract
In this manuscript, we present some unique fixed-point theorems satisfying
expansive type conditions by considering surjective self-mapping in the context of
parametric metric space.

1. INTRODUCTION:

The concept of metric spaces has been generalized in many directions. The
notion of a b-metric space was studied by Czerwik in [2-3] and a lot of fixed-point
results for single-valued and multi-valued mappings by many authors have been
obtained in (ordered) b-metric spaces (see, e.g., [4]-[5]). The concept of fuzzy set
was introduced by Zadeh [9] in 1965. In 1975, Kramosil and Michalek [7]
introduced the notion of fuzzy metric space, which can be regarded as a
generalization of the statistical (probabilistic) metric space. This work has provided
an important basis for the construction of fixed-point theory in fuzzy metric spaces.
In 2004, Park introduced the notion of intuitionistic fuzzy metric space [8].

2. DEFINITIONS AND PRELIMINARIES
Throughout this paper R and R * will represents the set of real numbers and
nonnegative real numbers, respectively.
In 2014, Hussain et al. [6] defined and studied the concept of parametric metric
space as follows.
Definition 2.1 Let X be a nonempty setand P : X X X X (0,4+00) — [0, +0) be
a function. We say P is a parametric metric on X if,

(1) P(x,y,t) = Oforallt > Oifandonlyifx = y;

(2) P(x,y,t) = P(y,x,t) forallt > 0;

3) Px,y,t) <P(x,2zt) + P(zy t) forall x,y,z € Xand all t > 0:

and one says the pair (X, P) is a parametric metric space.
The following definitions are required in the sequel which can be found in [1].
Definition 2.2 Let {x,};—~, be a sequence in a parametric metric space (X, P).

1. {x,}p=; issaid to be convergent to x € X, written as lim x, = x, forall t >

n—.0oo
0, if lim P(x,,x,t) = 0.
n—.0oo

2. {Xp}o=q, is said to be a Cauchy sequence in X if for all t> 0, if
lim P(xp,Xmt) = 0.

n,m-oo
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3. (X,P) is said to be complete if every Cauchy sequence is a convergent
sequence.
Definition 2.3 Let (X, ) be a parametric metric space and T: X — X be a mapping.
We say T is a continuous mapping at x in X, if for any sequence {x,}s=, in X such
that lim x,, = x, then lim Tx, = Tx.

n—»>oo n—»,oo

Example 2.4 Let X denote the set of all functionsf: (0,+o) - R. Define P :
X XX X (0,40) — [0,+) by P(f,gt) = |[f(t) —g(t)|V f,ge X and all t >
0. Then P is a parametric metric on X and the pair (X, P) is a parametric metric
space.

3. FIXED POINT RESULTS IN PARAMETRIC METRIC SPACES:
In this section, we prove some unique fixed-point theorems satisfying expansive
condition by considering surjective self-mapping in the context of parametric
metric space.
We begin with a simple but a useful lemma.
Lemma 3.1 Let {x,};=, be a sequence in a parametric metric space (X, ) such
that
(3.1.1) P (Xp, Xns1, ) < A"P(Xg,Xq,t)
whereA € [0,1)andn = 1,2,.... Then {x,}a=; is a Cauchy sequence in (X, P).
Proof Let m > n > 1. It follows that
(3-1-2) :P(anxm:t) = :P(Xn:Xn+1’t) + ?(Xn+1'xn+2:t) +-+ ?(Xm—l'xm't)
S (}\n + }Ln+1 + cee + }Lm_l) :P(Xo,xl,t)
S f\j\ :P(Xo, X1, t)
forall t > 0. Since A < 1. Assume that P (xg,x4,t) > 0. By taking limitas m,n -

+o0 in above inequality we get
(3.1.3) lim P(xy, Xmt) =0.
n,m—oo

Therefore, {x,}a=; is @ Cauchy sequence in X. Also, if P(xq,x4,t) =0, then
P(Xp, Xm,t) = 0 forall m > n and hence {x,};=; isa Cauchy sequence in X.
Now, our first main results as follows.
Theorem 3.2 Let (X, P) be a complete parametric metric space and T: X — X be a
surjection. Suppose that there exist a,b > 0 with a + 2b > 1 such that
(3.2.1) P(Tx, Ty,t) = aP(xy,t) + b [P(x, Tx,t) + P(y, Ty, t)]
Vx,y € Xwithx # yand all t > 0. Then T has a fixed point in X.
Proof Under the assumption. It is clear that T is injective. Let G be the inverse
mapping of T . Choose x,€X , set x; =G(xg), x; =G(xq) =
G2(Xg), wen ven one yXne1 = G(xp) = G"1(Xy) ... ...... Without loss of generality, we
assume that x,_; # x, for all n = 1,2, ....(otherwise, if there exists some n, such
that x,,,—1 = Xy, then x,,  is a fixed point of T). It follows that from condition
(4.3.2.1)
(3.22) P&Ep_1,Xypt) = P(TT 1x,_q, TT 1%, 1)

>aP(T x, 1, T71x,, ) + b P(T 1x,_4, TT 1x,_4, 1) + b P(T1x,, TT 1x,,t)
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= aP(Gx,_q1,Gx,,t) + b P(Gxy_q,Xp-1,t) + b P(GXy, Xp, 1)

=a P(Xn! Xn+1s t) +b :P(Xn' Xn—1s t) + bT(Xn+1! Xn» t)
Hence
(3.2.3) (1-b)PXp-1,Xn,t) = (@+b) P(Xpi1, Xn, t)
If a = 0,then b > 0. The above inequality implies that a negative number is greater
then or equal to zero. This is impossible. So, a # 0 and(1 — 2b) > 0. Therefore,
(3.2.4) P(Xns1,Xn t) S KP(Xp_1,%Xp, t)

where k = ﬁ < 1for alln € NU {0} and t > 0. Repeating (4.3.2.4) n-times, we

get
(3.2.5) PXps1, Xn t) S K" P (X0, %, 1)
for all t > 0. By Lemma 4.3.1,{x,}s=; is a Cauchy sequence. Since (X,P) is a
complete parametric metric space, there exists x* € X such that x, - x*asn — oo.
Now since T is surjective map. So there exists a point y in X such that x* = Ty.
Consider
(3.2.6) P (X, x5, t) = P(Txp41, Ty, t)

> aPXp+1, Y, 0) +b P(Xpi1, TXpe1, 1) + b P(y, Ty, D)

= a?(xn+1' Y t) +b ?(Xn+1'Xn' t) + b?(y' X*' t)
which implies that asn — +oo
(3.2.7) 0= (a+Db)P(y,x"1)
Hence y = x*. This gives that x* is a fixed point of T. This completes the proof.
Now we give an example illustrating Theorem 4.3.2.
Example 3.3 Let X = [0, +o0) be endowed with parametric metric,

_ (tmax{xy}, x#y
?(Xfot)_{O’ X=y

forall x,y € Xand t > 0. Define T:X - X by Tx = gx. Obviously, T is continuous

surjective map on X. So, fora = 4,b = —2 all the conditions of Theorem 4.3.2 are
satisfied. Therefore x* = 0 is the unique fixed point of T.
Setting b = 0 and a = k in Theorem 4.3.2, we can obtain the following result.
Corollary 3.4 Let (X, P) be a complete parametric metric space and T: X — X be a
surjection. Suppose that there exists a constant k > 1 such that
(3.4.1) P(Tx, Ty, t) = kKP(x,y,t)
Vv x,y € Xand all t > 0. Then T has a unique fixed point in X.
Proof From Theorem 3.2, it follows that T has a fixed point x* in X by setting b =
0 and a = k in condition (3.4).
Uniqueness. Suppose that x* = y* is also another fixed point of T, then from
condition (3.4.1), we obtain
(3.4.2) Px*y* 1) = P(Tx*, Ty*,t)

> kP(x*,y*t)
which implies P(x*,y*,t) = 0, that is x* = y*. This completes the proof.
Corollary 3.5 Let (X, P) be a complete parametric metric space and T: X — X be a
surjection. Suppose that there exists a positive integer n and a real number k > 1
such that
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(3.5.1) P(T"x, T"y,t) = kP(x,y,t)

Vx,y € Xand all t > 0. Then T has a unique fixed point in X.

Proof From Corollary 3.4, T® has a fixed point x*. But T"(Tx*) = T(T"x*) =
Tx*, So Tx* is also a fixed point of T". Hence Tx* = x*,x* is a fixed point of T.
Since the fixed point of T is also fixed point of T", the fixed point of T is unique.
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1. Introduction

Abbas M. and Rhoades B. E. [2] extend the fixed point theory in the context of
cone metric spaces, a concept introduced by Huang and Zhang [6]. Abbas and
Jungck [1] demonstrated the existence of coincidence and common fixed points for
mappings that fulfill specific contractive conditions within the setting of cone
metric spaces. The authors [2] prove new fixed point theorems for certain types of
contractive mappings in cone metric spaces. Their results do not require the
assumption of continuity or commutativity of the mappings, which makes their
theorems more broadly applicable. In this paper we generalize these results by using
new contractive conditions and these results appear as special cases of our result.

2.Preliminaries
Consistent with Abbas M. and Rhoades B.E. [2], the following definitions are
required in this context.

Definition 2.1 Let E be a real Banach space. A subset P of E is called a cone if
and only if:

(@) P is closed, non empty and P + {0};

(b)a,b €R, a,b = 0,x,y € P imply that ax + by € P,

() P n (=P) = {0}.
Given acone P c E, we define a partial ordering < with respectto P by x < y if
and only if y —x € P. A cone P is called normal if there is a number K > 0 such
that forall x,y € E,

0 < x < yimplies ||x|| < K||y||#(2.1)

The least positive number satisfying the above inequality is called the normal
constant of P, while x < y stands for y — x € int P (interior of P ). We shall write
x < yto indicate that x < y but x # y.
Definition 2.2 Let X be a nonempty set. Suppose that the mapping
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d: X x X — E satisfies:

(d1) 0 < d(x,y) forall x,y € X and d(x,y) = 0 ifand only if x = y;

(d2) d(x,y) = d(y,x) forall x,y € X;

(d3) d(x,y) <d(x,z) +d(zy) forall x,y,z € X.
Then d is called a cone metric on X and (X, d) is called a cone metric space. The
concept of a cone metric space is more general than that of a metric space.
Definition 2.3  Let (X, d) be a cone metric space, {x,} a sequence in X and x €
X.Forevery c¢ € E with 0 «< ¢, we say that {x,,} is:

(e) a Cauchy sequence if there is an N such that, for all n,m > N, d(x,,, x,,) <
c;

(f) a convergent sequence if there is an N such that, foralln > N, d(x,, x) < ¢
for some x in X.
Definition 2.3 A cone metric space X is said to be complete if every Cauchy
sequence in X is convergent in X i.e. for any sequence {x,} in X, {x,}
convergesto x € X ifand only if d(x,,,x) = 0 asn — o. The limit of a
convergent sequence is unique provided P is a normal cone with normal constant
K.(see [2] & [6])

3. Main Result
Theorem 3.1 Let (X, d) be a complete cone metric spaces, and P a normal cone
with normal constant K. Suppose that the mapping f and g are two self-maps of X
satisfying:
d(fx,gy) < ad(x,y) + ﬁ[g((x, f)ﬁ[cl) :(djgy),] gy +vld(x,gy) +d(y, fx)]
y,gy)[1+d(x,fx

+4 TrdCiy) (3.1.1)
Vx,y € X,wherea,$,y,06 =0anda + 28+ 2y + 6 < 1.Then fand g have a
unique common fixed point in X. Moreover, any fixed point of f is fixed point of g
and conversely.
Proof- Suppose x, is an arbitrary point of X, and define {x,,} by
Xon+1 = [Xon Xon+2 = 9Xon+1, M = 0,1,2 ...
Now,
d(X2n+1, X2n+2) = A(fXan, 9X2n+1)

< ad(Xon, Xont1) + BlACeon, fX2n) + d(X2n41, 9Xon+1)] +

YId(Xon, gXan+1) + d(Xoni1, fX20)] +
5 d(Xon4+1,9%2n+1)[1+d(X20,f X20)]

1+d(X2n,X2n+1)
< ad(Xan, Xan41) + Bld(Xan, Xan41) + A(Xoni1, Xone2)] +
vId(Xon, Xon42) + d(X2n41, Xon41)] + 6

d(Xan+1.X2n+2)[1+d(X2nX2n+1)]
1+d(X2n.X2n+1)
< ad(Xn, X2n41) + BlA (2, Xon41) + AOoni1, Xona2)] +
YId(an, Xan41) + A(Xoni1, Xan42)] + 0d (Xon 41, Xan42)
d(Xon+1, X2n+2) < (@ + B +y) d(xon, Xans1) + (B + v + 8)d(Xzns1, Xon42)
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(a+B+y)
d(Xon+1) Xon42) < T—(B47+0) d(Xan, X2n+1)
d(Xon+1) Xont2) < Cd(Xp, Xon41)

(a+B+y)
Where,Csm<1 ...(3.1.2)

Similarly, it can be shown that,
d(X2n13, Xon42) < Cd(Xan42) X2n11)
Therefore, for all n
d(Xn41 ¥nt2) < CA(xp, Xpyp) < - < C (20, %1)
Now, foranym > n
d(xmrxn) < d(xn: xn+1) + d(xn+1' xn+2) + o+ d(xm—li xm)
< [C™+ C™Y + o+ €™ d(x, x1)
- Cn[l _ Cm—n] d(x
=" 1_c C 0, X1)
< = d(xo, %)
From definition (2.1) we have
1dGem, xa) 1| < K 1= lld o, %)l - (3.13)
Which implies that d (x,,, x,) = 0 asn,m — co.
Hence {x,,} is a Cauchy sequence.
Since X is complete, 3 a p in X such that x,, - p as n —» o now using (3.1.1)
d(p, gp) < d(p, x2n+1) + d(X2n+1, gP)
< d(p, X2n+1) + A(f X200, gD)
< d(p, Xan+1) + ad(xon11,0) + Bld(Xon, X2n41) + d(p, gp)] +

vld(xzn, gp) + d(P, X2n41)] + 6
d(p,gp)[1+d(xX2p, X2n41)]

1+d(x2n,p)
< d(P, Xan+1) + ad(Xani1,p) + Bld(x2n, Xan41) +d(p, gp)] +
y[d(xzn,0) + d(p, gp) + d(P, X2041)] + 6

d(p,gp)[1+d(x2n, X2n41)]
1+d(x2n:p)
1

<dp,gp) < ;5

BA(X2n, Xons1) + ¥[d(Xon, p) + d(D, X2n41)] + 6
From definition (2.1)
ld(p, gp)Il < K 1_Biy_5{lld(p, Xn+) || + alld(Xn 0, I + Blld Cen, Xp4 )l

1+|ld(xp, Xne1)l
+ylldCo, P+ YIld®, Xpe DIl + 8 — 22057 .. (3.1.4)

Now right-hand side of the above inequality approaches to 0 as n — co.
Hence ||d(p, gp)|| = 0, and p = gp. To prove uniqueness, we have from (3.1.1)
d(fp,p) = d(fp,gp)

< ad(p,p) + Bld(p, fr) + d(p,gp)] + v[d(p, gp) + d(p, fp)]
S d(p.gp)[1+d(p.fp)]

1+d(p,p)

[d(p, X2n+1) + ad (X241, D) +
1+d(X2n, X2n41)
1+d(x2n'p)
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d(fp,p) < (B+v)d(, fp)
Which, using definition of partial ordering on E and properties of cone P, give
d(fp,p) = 0,and fp = p. To prove uniqueness, suppose that if g is another
common fixed point of f and g, then
d(p,q) = d(fp, gp)
< ad(p,q) + Bld(p, fp) + d(q,99)]
+ vld(, ga) + d(q, fp)] + § “LLLLZELIE)

1+d(p.9)
d(p,q) < (a +2y)d(p, q)
Which gives d(p,q) = 0and g = p.
Hence f and g have a unique common fixed point in X.
Corollary 3.2 Let (X, d) be a complete cone metric space, and P be a normal
cone with normal constant K. Suppose that a self-map f of X satisfies:
d(fPx, fy) < ad(x,y) + Bld(x, fPx) +d(y, fy)]

d(y,fly)[1+d(x,fP
FyldCe, 1) +d(y, 7)) + 6 LB 301

forall x,y € X, where a,8,7,6 = 0, + 23 + 2y + 6 < 1, and p and q are fixed
positive integers. Then f has a unique fixed point in X.

Proof. Inequality (3.2.1) is obtained from (3.1.1) by setting f = fP and g = f 9.
Corollary 3.3 Let (X, d) be a complete cone metric space, and P be a normal
cone with normal constant K. Suppose that mapping f: X — X satisfies

d(fx,fy) < ad(x,y) + pld(x, fx) + d(@y, fy)] +yld(x, fy) + d(y, fx)]
) d(y'f”Ej:d(;"fx” . (3.1
1+d(x,y

forall x,y € X, where a,8,y,6 2 0and a + 28 + 2y + 6 < 1. Then f hasa
unique fixed point in X.
Proof. Set, p = g = 1 in Corollary (3.2.1).
Corollary 3.4 Let (X,d) be a complete cone metric space, and P be a normal
cone with normal constant K. Suppose that mapping f: X — X satisfies:

d(fx, fy) < s1d(x,y) + s2d(x, fx) + s3d(y, fy) + s4d(x, fy) +

aly, 1+d(x,fx)
ssd(y, fx) + s CIEERIEL 3.4

forall x,y € X, where s; > 0 foreachi € {1,2,..,5}and ¥;_, s; <1.Thenf
has a unique fixed point in X.
Proof. In inequality (3.4.1) interchanging the roles of x and y, and adding the

new inequality to (3.4.1) yields (3.3.1) with & = 54,8 = 52253,)/ = %,5 = S.

Corollary 3.5 Let (X, d) be a complete cone metric space, and P be a normal

cone with normal constant K. Suppose mapping f: X — X satisfies:
d(, fy)I1+d(x, fx)]

d(fx,fy) < ad(x,y) + 6| T+dy)

forall x,y € X, where, ,§ > 0and a + 6 < 1. Then f has a unique fixed point

inX.

Corollary 3.6 Let (X, d) be acomplete cone metric space, and P be a normal cone

with normal constant K. Suppose that mapping f: X — X satisfies:

..(3.5.1)
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d(fx, fy) < Bld(x, fx) + d(y, fy)]
+yld(x, fy) + d(y, fx)] ..(3.6.1)

forall x,y € X, where 8,y 2 0and g +y < % . Then f has a unique fixed point
in X.

Corollary 3.7 Let (X, d) be a complete cone metric space, and P be a normal
cone with normal constant K. Suppose mapping f: X — X satisfies:

d(fx,fy) < ad(x,y) + yld(x, fy) + d(y, fx)] .. (3.7.1)

forall x,y € X, where o,y = 0and a + 2y < 1. Then f has a unique fixed
point in X.
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1. Introduction

Fixed point theory plays an essential role in numerous mathematical and
computational areas. In mathematical analysis, fixed point theory is a dignified and
influencing branch or mathematics. This theory majorly used in differential
equations, numerical methods and optimization.

In 1922 S. Banach has proved a very useful and significant result which is
Banach’s contraction principle.

Banach’s Contraction principle States that "if f is a contraction mapping on
complete metric space, then f has a unique fixed point.”

Stefen Banach was a leading figure in function analysis. Fields like
Topology, differential equations, numerical analysis are the areas in which his work
influenced very effectively. His Contraction principle was one of the innovative
results in the metric fixed point theory in mathematical analysis and has application
in multiple scientific. Mathematical and computational field.

In 1912 Luitzen Brower has proved that any continuous function mapping
a convex compact subset of Rn to itself has a fixed point. This work is done earlier
than Banach’s Contraction principle.

In 1930 Julius Schauder expanded Brower’s fixed point theorem to infinite
dimensional spaces. Many remarkable works have done in the field of fixed point
theory. S. Kakutani developed a generalization in 1941 which was useful in game
theory and economics.

In this paper we are presenting a computer program and a computational
approach to find a fixed point of a linear equation satisfying Banach’s Contraction
principle.

Banach’s Contraction principle -Let (X, d) be a complete metric space and
let f: X — X be a contraction mapping, there exists constant c i.e.
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0 <c<1lsuchthatd(f(x),f(y)) = cd(x,y)foreveryx,y € X

This theorem guarantees that f has a unique fixed point x which can be
iteratively approximates as x,,,; = f(x), When x,, converges to x asn — co.

In this program we will take an initial guess Xo, and will apply the function
iteratively. This program will do the process and will show that what is an exact
fixed point of the given linear equation. This program will show fixed point correct
up to 4 decimal places. And this program will also show that how many iterations
has done to find exact fixed point.

2. Preliminaries
Definition 2.1. (Metric Space) [05]: A metric space is a set X equipped with a
[distance function d that satisfies the following properties:

1. Non-negativity: Forall x,y € X,d(x,y) = 0.

2. ldentity of indiscernible: For all x,y € X, d(x,y) = 0if and only if

X =Y.

3. Symmetry: Forall x,y € X,d(x,y) = d(y,x).

4. Triangle inequality: Forall x,y,z € X,d(x,z) < d(x,y) + d(y,2).
The function d is called a metric on X. The pair (X, d) is called a metric space.

Definition 2.2. (Fixed Point) [04]: A point which remains invariant under the
transformation is said to be a Fixed Point.

Example - Let f: R — R given by f(x) = x? + 1. The fixed points of f are the
solutions to the equation x2 + 1 = x; it follows that x = 1/2 + +/3/2 are the
fixed points of f.

Definition 2.3. (Contraction mapping) [01]: Let X = (X, d) be a metric space.
A mapping T: X — X is called a contraction on X if there is a positive real number
a < 1stforallx.ye X.d (Tx.Ty) < ad(x,y), (a<1).

Geometrically this means that any points x and y have images that are together than
those points x and y; more precisely, the ratio d (Tx, Ty)/d(x,y) does not exceed
a constant a which is strictly less than 1

Definition 2.4. (Class) [02]: A class is a blueprint or template for creating objects
in object-oriented programming. It defines attributes (fields/variables) and
behaviours (methods/functions) that objects instantiated from the class will have.

Definition 2.5. (Method) [03]: A method in Java is a block of code that performs
a specific task and can be called to execute when needed. It enhances code
reusability and modularity. A method typically consists of a name, return type,
parameters (optional), and a body containing executable statements.

Definition 2.6. (Datatype) [10]: A data type is a classification that specifies which
type of value a variable can hold in a programming language. It determines the
possible values for that type, the operations that can be performed on it, and the
way the values are stored in memory.
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Definition 2.7. (Variable) [03]: A variable in Java is a named memory location
used to store data that can be changed during program execution. Each variable has
a data type, which defines the kind of values it can hold, such as integers, floating-
point numbers, or characters.

Definition 2.8. (While loop) [03]: A while loop in Java is a control flow statement
that repeatedly executes a block of code as long as a specified Boolean condition
evaluates to true. It is useful when the number of iterations is not known
beforehand.

Definition 2.9. ((Fnction)Math.abs) [03]: The Math.abs() function in Java returns
the absolute value of a given number. It removes any negative sign, ensuring the
result is always non-negative. This function is overloaded to work with different
numeric types such as int, long, float, and double.

Definition 2.10. (object) [03]: An object in Java is an instance of a class that
encapsulates both state (attributes/fields) and behaviour (methods/functions).
Obijects are created using the new keyword and allow interaction with class-defined
functionalities.

3. Main Approach (Java implementation)
public class Contraction

{
{

public static double contFun(double x)
return 0.4 * x + 1;

public static double findFixedPoint(double x0, double e, int maxIterations)
{
double currentX = x0;
double nextX = contFun(currentX);
int iteration = 1;
System.out.printf("Iteration %d: x = %.6f%n", iteration, nextX);
while (Math.abs(nextX - currentX) > e && iteration < maxIterations)
{
currentX = nextX;
nextX = contFun(currentX);
iteration++;
System.out.printf("Iteration %d: x = %.6f%n", iteration, nextX);

¥

return nextX;

}

public static void main(String[] args)

{
double x0 = 0.0;

[Ix=initial guess
double e= 0.0001;
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/le=tolerance
int maxIterations = 50;

System.out.printIn("Finding fixed point using Banach's Contraction Principle...");
double fixedPoint = findFixedPoint(x0, e, maxlterations);
System.out.printf("%nApproximate Fixed Point: %.6f%n", fixedPoint);

}
}
Output —
Finding fixed point using Banach's Contraction Principle...
Iteration 1: x = 1.000000
Iteration 2: x = 1.400000
Iteration 3: x = 1.560000
Iteration 4: x = 1.624000
Iteration 5: x = 1.649600
Iteration 6: x = 1.659840
Iteration 7: x = 1.663936
Iteration 8: x = 1.665574
Iteration 9: x = 1.666230
Iteration 10: x = 1.666492
Iteration 11: x = 1.666597
Iteration 12: x = 1.666639
Approximate Fixed Point: 1.666639

4. Conclusion

This paper is introducing a java based program to find the exact fixed point of a
linear equation satisfying Banach’s contraction principle, implementation of this
program may help to provide a fixed point of various types of linear equations.
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1. Introduction

The concept of a generalized metric space introduced by Branciari [1] in
which the triangular inequality of a metric space has been replaced by a more
general inequality in which instead of three points it involving four points. As such,
any metric space is generalized metric space but the converse is not true [1]. He
presented the well-known Banach's fixed point theorem in such a space. a further
generalization of that result has been obtained.

It becomes natural to explore whether alternative well-known fixed-point
theorems—Dbeyond those that rely strictly on contraction-type mappings—can also
be established within the framework of generalized metric spaces. In this paper, we
pursue this line of inquiry by directing our attention to such theorems and
presenting a fixed-point result that extends existing findings through slight but
meaningful modifications, specifically tailored to these broader spaces. In this
paper we generalized the result of [10] by taking more general inequality.

2. Preliminaries
Following definitions are required in the sequel.
Throughout, the letters R and N will denote the set of all non-negative real
numbers and the set of all positive integers respectively.
Definition 2.1: Let X be asetand d: X?> — R™ a mapping such that for all x, yeX
and there exist a point conditions. X. different from x and y, one has following
1 d(x,y)=0ifandonlyifx =y
2 d(x,y)=d(y.x)
3 d(x,y)< d(x.2) + d(z.y)
Then we will say that (X, d) is a metric space.
Definition 2.2: Let X be a set and d: X2 - R* a mapping such that for all
x,y € X and for all distinct point x4, x5, x5, ....., X, € X. cach of them different from
x and y. one has
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ld(x,y)=0ifandonlyifx = y
2d(x,y) =d(y.x)
3.d(x,y) <d(x.xy) +d(x1,%x) + .+ d(xp_1, %) +d(x,,y) Then we will
say that (X.d) is generalized metric space (or shortly g.m.s.)
Definition 2.3: 1.et (X.d) be a g.m.s. A sequence {x,} in X is said to be a Cauchy
sequence if for any w > 0 there existn € N such that for all m,ne N, n <m,
one has d(x,, xp+m) < & Then (X.d) is called complete if every Cauchy
sequence in X is convergent in X.
Let T:X— X be a mapping where X is a g. m. s. for each x € X

0(x,) = {x,Tx,T*x ....}
Definition 2.4: X is said to be T-orbitally complete if and only if every Cauchy
sequence which is contained in O(x, o) for some xeX converges in X.

3. Main Result
Theorem 3.1 Let (X, d) be a metric space, if T: X — X be a mapping such that
d(Tx,Ty) <B[d(x,Tx) +d(y,Ty) +d(x,Ty) +d(x,y)] ...(3.1.1)

holds for all x, yeX where 0 < 8 < %

and if X is T-orbitally complete then T has a unique fixed point in X.
Proof: Let xeX now using (1) with y = Tx
d(Tx,Ty) <pBld(x,Tx)+d(y,Ty) +d(x, Ty) +d(x,y)]
d(Tx, T?x) < B[d(x,Tx) + d(Tx,T?x) + d(x, T?*x) + d(x, Tx)]
d(Tx, T?x)(1 — B) < B[2d(x,Tx) + d(x, T?*x)]
d(Tx, T?x)(1 — B) < B[2d(x,Tx) + d(x,Tx) + (Tx, T?x)]
d(Tx, T?x)(1 —2pB) < 3Bd(x,Tx)

d(Tx, T?x)(1 — 2B) < (i’jﬁ) d(x, Tx) ..(3.1.2)

Again, by using (3.1.1) with and
d(T?x,T3x) < B[d(Tx,T?x) + d(T?x,T3x) + d(Tx,T3x) + d(Tx, T?x)]
d(T?x,T3x)(1 — B) < B[2d(Tx,T?x) + d(Tx, T3x)]
d(T?x,T3x)(1 — B) < B[2d(Tx,T?x)) + d(Tx,T?x) + (T?x,T3x)]
d(T2x, T3x)(1 — 28) < 3Bd(Tx, T?x)
d(T2x, %) < 2o d(Tx, %)

By (3.1.2)

2 3,) < 3B 3B
d(T*x,T>x) < 25 W2p) d(x,Tx)

2
d(T?x,T3x) < (%) d(x, Tx)

Inductively we have
n
d(1%x, T%x) < (Z5) d(x, Tx)

1-28
Let % = r, where r < 1 therefore
d(T"x, T"1x) < r™d(x,Tx) ...(3.1.3)
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Now we can claim that {T™x} is Cauchy sequence.
For m > n we have by the definition ()
d(T"x, T™x) < d(T™x, T"*1x) + d(T™"1x, T""%x) + ...+ d(T™ 1x, T™x)
By (3.1.3)
d(T"x, T™x) < r*d(x,Tx) + r"*1d(x,Tx) + ....+r™ 1d(x, Tx)
d(T"x, T™x) < d(x, Tx)[r™ +r*1 + .+ r™m1]
Letm=n+p,p>1,
d(T™x, T™x) < d(x, Tx)[r™ + r™*1 + ..+ r"tP71]
d(T"x, T"x) <d(x, Tx)[1+r+72+ ..+ 7rP71]
1-rP
d(T"x, T™x) < d(x, Tx)r" ,(1?)
d(T"x,T™x) < d(x,Tx) (ﬁ)
For all,neN since 0 <r < 1thenr™ -0 asn— oo and so {T"x} is Cauchy
sequence. Since X is T-orbitally complete let T"x = u .Therefore all its
subsequence also converges to u.
Now by using definition (2.2)
d(u, Tu) <d(u, T"x) + d(T"x, T"*1x) + ...+ d(T*" 1x, T?"x)
+d(T?"x, Tu)
By using (3.1.1)
d(u, Tu) < d(u, T"x) + d(T"x, T"*1x) + ...+ d(T*" 1x,T?"x)
+ BlA(T?™ 1x,T?"x) + d(u, Tu) + d(T™ 1x,u)]
diu, Tu)(1 = B) <d(u, T"x) + d(T™x, T"1x) + ...
+ (1= B)d(T*" 1x,T?"x) + Bd(T™ 1x,u)
d(u, Tu) < jd(u, T"%) + d(T"x, T" 1x) + ..

+(1 = B)d(T*" x, T?"x) + Bd(T™ 1x,u)
Limitingn — o

d(u,Tu) < 1% [duw,uw) +du,u) + ...+ 1+ B)d(u,u) + Bd(u,u)]

B
d(u,Tu) <0 impliesTu =u s uis fixed point of f T.
Uniqueness: Let v be another fixed point of T
~Tv=v

Now using (3.1.1) withx =uandy = v
d(Tu, Tv) < B[d(u,Tu) +d(v,Tv) + d(u, Tv) + d(u,v)]
d(u,v) < fld(w,u) +d(v,v) +d(u,v) + d(u,v)]
d(u,v) < 2pd(u,v)
dlu,v)(1-28)<0
Since0 < B < %therefore d(u,v) = 0impliesu = v
This completes the proof of theorem.
Corollary 3.2. Let (X, d) be a metric space, if T:X — X be a mapping such that
d(Tx,Ty) <p[d(x,Tx)+d(y,Ty) +d(x,Ty)]
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holds for all x, yeX where 0 < 8 < i
and if X is T-orbitally complete then T has a unique fixed point in X.
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