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This Volume of

INSPIRE
is being dedicated to
Varahamihira: Master Astronomer and Mathematician

Varaha or Mihir, was an Indian astronomer, Indian astronomer,
mathenatician, and astrologer and who lived in Ujjain. He was born in Avanti
region, roughly corresponding to modern-day Malwa, to Adityadasa, who was
himself an astronomer. According to one of his own works, he was educated at
Kapitthaka. He is considered to be one of the nine jewels (Navarata (Navaratnas))
of the court of legendary ruler Yoshdharman Vikramaditya of Malwa.

He was the first one to mention in his work Pancasiddhantika that the
avanamsa, or the shifting of the equinox, is 50.32 seconds.

Varahamihira's main work is the book Pancasiddhantika (or Pancha-
Siddhantika, "[Treatise] on the Five [Astronomical] (Canons) dated ca. 575 CE
gives us information about older Indian texts which are now lost. The work is a
treatise on mathematical astronomy and it summarises five earlier astronomical
treatises, namely the Surya Siddhanta, Romaka siddhanta, Paulisa Siddhanta,
Vasihtha Siddhanta and Paitamaha Siddhantas . It is a compendium of Vedanga
Jyotisha as well as Hellenistic astronomy (including Greek, Egyptian and Roman
elements). He was the first one to mention in his work Pancha Siddhantika that
the ayanamsa, or the shifting of the equinox is 50.32 seconds.
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FOREWORD

The present volume of INSPIRE contains the various research papers of
Faculty and Research Scholars of Department of Mathematics, INSTITUTE FOR
EXCELLENCE IN HIGHER EDUCATION, BHOPAL (M. P.).

For me it is the realization of a dream which some of us have been
nurturing for long and has now taken a concrete shape through the frantic efforts
and good wishes of our dedicated band of research workers in our country, in the
important area of mathematics.

The editor deserves to be congratulated for this very successful venture.
The subject matter has been nicely and systematically presented and is expected
to be of use to the workers.

(Dr. M. L. Nath)
Director & Patron
IEHE, Bhopal (M. P.)
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FRACTIONAL-CALCULUS
RESULTS PERTAINING TO I-FUNCTION

Rajeev Shrivastava
Government Indira Gandhi Home Science Girls College,
Shahdol-484001, Madhya Pradesh, India

ABSTRACT

Fractional Calculus and generalized hypergeometric functions have
contributed a lot to the theory of science and engineering. In view of importance
and usefulness of fractional-calculus operators in different directions, we present
a number of key results for the product of two I-functions involving the Riemann-
Liouville, the Weyl and such other fractional-calculus operators as those based
upon the Cauchy-Goursat Integral Formula. The results discussed here can be
used to investigate a wide class of new and known results.

1. INTRODUCTION:

Fractional Calculus is the field of applied mathematics that deals with the
derivatives and the integrals of arbitrary orders. During the last three decades
Fractional Calculus has been applied to almost every field of science, engineering
and mathematics. Many applications of Fractional Calculus can be found in fluid
dynamics, Stochastic dynamical system, plasma physics and controlled
thermonuclear fusion, image processing, nonlinear control theory, nonlinear
biological system, astrophysics, etc.

Two of the most commonly encountered tools in the theory and
applications of Fractional Calculus are provided by the Riemann-Liouville
operator R} (v € C) and the Weyl W,” (v € C) operator which are defined by [1,
see also [3, 4, 8]]. In this paper, we will define these operators as follows:

(z=8V1f()dé (Re(v)>0)
RY{f (2)} = F(V)J (1.1)

kﬁRgﬂl{f(z)} (—n<Re(v) <0;n€EN)
and

-2 f()dE  (Re(v)>0)
W{f (2)} = F(V)J (1.2)
k@W!*”{f(Z)} (—n<Re(v) <0;n€N)
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provided that the defining integrals exist, N being the set of positive integers.
The following definition of a fractional differintegral of order v € C is based
essentially upon the familiar Cauchy-Goursat Integral Formula:

Definition (Cf. [2 and 9]) If the function f(z) is analytic (regular) inside and
on C, where

c={c,Ct}, (1.3)
C~ is a contour along the cut joining the points z and —oo + i 3(z), which
starts from the point at —oo, encircles the point z once contour clockwise and
returns to the point at —oo, C* is a contour along the cut joining the points z
and oo + i J(z), which starts from the point at o, encircles the point z once
contour clockwise and returns to the point at oo.

r 1
f) = Gy = [ L ae (14)
WeC\z; z- = {-1,-2.-3,..})

and

fn(2) = lim {£,(2)}, (n€N={1,2,3,..}) (1.5)
where ¢ # z,

—n<arg(é —z)<mforC~, (1.6)

and
0 <arg(¢é —z) <2mforcC™, (1.7)

Then £, (z) (Re(v) > 0) is said to be the fractional derivative of f(z) of
order v and f,,(z) (Re(v) < 0) is said to be the fractional integral of f(z) of

order - v, provided that

lf,(2)| < (v €R). (1.8)

The I-function, defined by Saxena [5], has been further studied by

other workers [7 and 10]. In this paper we will define and represent the I-
function in the following manner:

I[x] = Ipy [(C]'YJ)“V (”'Vﬂ)’””] =Lf 0(s) x5ds,  (1.9)
o [( 6)1M 1“611)M+1Q] 27w)L
where
M R N — .
8(s) = [I;=1T(d; — §;5) [Ij=1T(A = ¢; + ¥;9) (1.10)

{H] i LA = dji + 6j5) H] v 1 L(Gi — Vjis)}’

where L is a suitable contour, w =+v—1 and all other conditions given in
literature [6].
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By summing up the residues at the simple poles of the integrand of
(1.9), the following expression is obtained:

M o
_ D"0Gkn) g,
k=1h=0
where
Sin = d"; h =042 (1.12)
and
(1)

O(Gkn) = T, = 8.0 (1.13)

provided that the series on the right hand side of (1.3) is absolutely
convergent.

2. THE MAIN FRATIONAL DIFFERINTEGRAL FORMULAS:

First of all, for the Riemann-Liouville operator R} defined by (1.1), we
have

RV{ZP 11;,"3 ~(xz%) I,I,‘/I_'g, NeZ)

- 5 j (2= eI () MY (€N dE, (Re (v) > 0). (2.1)

Now expressing the one /-function in series form as given by (1.11)
and another /-function in terms of Melline-Barnes type of contour integral
given by (1.9), interchanging the orders of summation and integration and
putting ¢ = zt in the resulting integral, we find that

vip-1 M, 2 1Dhe
R}}{Zp_llm . (xz%) IP Qi R()’ZT)} =2 Z Z {(()h)# Slh O’fkh}

1

f 0(s) (sz)Sdsf tProCkhtTs=1(1 — )= dt, (Re (v) > 0). (2.2)
r 0
Further, we evaluate the Eulerian integral in (2.2) by applying the
following integral representation for the familiar Beta function B(a, 8):
1

27w

a—1

) W dt = B(ﬁ,a)

B(a,B) = f t*1(1—t)f1dt =

0
03
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@Iy
T T(a+p)

and interpret the resulting integral in (2.2) as the I/-function by means of the
definition (1.9), we get

{Re (a) > 0,Re (B) > 0}. (2.3)

R 5t G2 1,07}

_ L vip-1 (- Dh@“"") kh 79Ckh
=z ZZ{ (h)' 5, x¢ 6}

=1h=0
M,N+1 47 (1=p = 06w 1) (Cj'yj)l,N'( ji'yji)N+1,Pl-

y )
Pi+1Qi+LR (.6, (o i)M+1,Qi' (1=p=0Gn-v1)

d.
<T > 0,0 > 0;Re(v) > 0,Re(p + 6{;z) + T min {Re <—]>} > O),
' 1<jsm 6]-

(2.4)

provided that the series on the right hand side of (2.4) is absolutely
convergent.
In precisely the same manner as mentioned above, by applying the
definition (1.2) with
§=z(1+t)and d¢ = z dt,
and evaluating the resulting infinite integral as a Beta function by means of
(2.3), we find that

WP s ™) 15 (v70)

. (=D"O(lkn) khg=0Tkn
—7 pZZ{ (h)! 6, xohnz™o% }

M,N+1 (1 +v—p—0GnT), (Cj’yf)LN’ (c ji'yji)N+1,Pi
Pi+1,Qi+1R | YZ 5 " , (2.5)
( )1M ( jio i)M+1 Q’( —p— O-{k:h’r)

¢—1
)}>o)
Y
provided that each members of (2.5) exist.
Next, we make use of the definition (1.4) for which it is known that [1,
Vol. ], p. 28]

<T>0 o> 0; Re(v)>ORe(p+0{kh)+r min {Re(

1sjsm

(Zk)v = g iV Flg‘_z__kl)() zk—v’ (2.6)
" _ I'lv—k)
( , Vv € C; W < 00)
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In this case, too, we choose to apply the series representation for the

first I-function and for the second /-function in terms of Mellin-Barnes type
of contour integral given by (1.9), and we thus obtain

(zPim ez 3L, R(yz-f))

. (V"G 11 ot
= g VP ZZ{ T X° z}

MN+1 (1 —v=p=0GnT) (Cf’yf)LN’ (c ﬁ'yﬁ)N+1,Pi
Pi+1,0;+1R |YZ 5 " , (2.7)
( )1M ( jio i)M+1,Qi’ ( -—p— o-{k;h’ T)
(t>0,0>0),

provided that each members of (2.7) exist.
3. SPECIAL CASES:

(D) Taking x =0,R =1 in (2.4), we arrive at the following results
involving Fox’s H-function

R}’{z"’_1 H%’QN (yZT)}
(1 - P T); (le yj)l'P
(dj, Sj)l,Q’ 1-p—-v,1)

d:
(r > 0,Re(v) > 0,Re(p) + T min {Re <—1>} > 0),
1<sjsm O;

j
provided that each members of (3.1) exist.

v+p 1HM ,N+1
P+1,0+1

,(3.1)

(ii) Taking x =0,R=1 in (2.5), we arrive at the following results
involving Fox’s H-function
wy{z=° HMN(yZ_T)}
:Zv—pHMN+1 (1+V_p,T), (Cj’yj)llp

P+1,0+1 |VZ
( -6-)1Q,(1—p,r)

, ci—1
(T > 0,Re(p) + T min {Re < ] >} > Re(v) > 0),
1<jsm y]

provided that each members of (3.2) exist.

(3.2)
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(iii)

Taking x =0,R =1 in (2.7), we arrive at the following results
involving Fox’s H-function

(70t 0279,
(1_V_ 'T)r i,V
T p (] y])l‘p ’ (33)
(djl 6])1,Q’(1 - ,0;7:)

(t>0,0>0),
provided that each members of (3.3) exist.

— ,—V—p ,—inv gM,N+1 -
=Z e P+1,0+1 |VZ

4. CONCLUSION:

The importance of our result lies in their manifold generality. In view of

the generality of the I-function, on specializing the various parameters, we can
obtain from our results, several results involving a remarkable wide variety of
useful functions, which are expressible in terms of Fox’s H-function, Meijer’s G-
function etc. and their special cases. Thus, the result established in this paper
would at once yield a very large number of results involving a large variety of
special functions occurring in the problem of science, engineering and
mathematics.

oo

10.

REFERENCES

Erdelyi, A., Magnus, W., Oberhittinger, F. and Tricomi, F.G.: Tables of Integral
Transforms, Vol. I, McGraw-Hill Book Company, New York, (1954).
Nishimoto, K.: Fractional Calculus, Vol. I-1V, Descartes Press, Koriyama,
(1996).
Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional
Derivatives, Fractional Differential Equations to Methods of their Solutions and
Some of Their Applications, Mathematics in Science and Engineering 198,
Academic Press, New York, (1999).
Samko, S.G., Kilbas, A.A. and Marichev, O.l.: Integrals and Derivatives of
Fractio nal order and some of their Applications, Gordon and Breach Science
publisher, (1993).
Saxena, V.P.: Proc. Nat. Acad. Sci. India 52A (1982): 366.
Saxena, V.P.: The I-function. Anamaya Publishers, New Delhi (2008).
Sharma, C.K. and Shrivastava, S.: Proc. Nat. Acad. Sci. India, 62 (A) (1992):
235.
Srivastava, H.M. and Buchman, R.G. : Theory and Applications of Convolution
Integral Equations, Kluwer series on Mathematics and its Applications 79,
Kluwer Academic Publishers, Dordrecht, (1992).
Srivastava, H.M., Owa, S. and Nishimoto, K.: Some Fractional Differential
Equations, J. Math. Anal. Appl. 106, (1985), 360-366.
Vaishya, G.D., Jain, R. & Verma, R.C.: Proc. Nat. Acad. Sci. India 59A (1989):
329.

06



INSPIRE ISSN: 2455-6742
Vol 01, May 2016 No. 02 07-12

ON COMMON FIXED POINT THEOREMS

A.S. Saluja
Institute For Excellence In Higher Education Bhopal(MP)
&
Devkrishna Magarde
Patel College Of Science &Technology Bhopal(M.P.)-462044
&
Alkesh Kumar Dhakde
Govt J.H. College Betul(M.P)
&
Pankaj Kumae Jhade
Govt Gitanjali College Bhopal(M.P)

ABSTRACT

In this paper we establish a common fixed point theorem for a quadruple
of self mappings in a normed space using Mann lIteration.

Keywords: Common fixed points, Mann iteration.
2000 MSC: 54H25, 47H10.

1. INTRODUCTION:

Throughout this paper T, & T, be two self mappings of a Banach
space B. The Mann iteration process associated with T, & T, is defined in the
following manner:

Let X, € N and let

Xonaa = (1=C0) X +C, T,
Xon2 = (1= Cont) Xons + Conat T2 Xonus
For n=0,12,.... where C, satisfies,
(i) o =1 (ii) 0<c, <1, n=12,.. & (iii) limc,=h>0

N—o0
Pathak [1] prove the following theorems for a quadruple of self mappings
as follows:

Theorem 1.1: Let X be a closed convex subset of a normed space N . Let
T, & T, be mappings of X into X andlet f &Q be injective and continuous
mappings of X into X satisfying:
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| =T 1] fx=Ty]]
1+| fx—Tx|

| x-Toyl[1-] 5 -Tx|] [Tx—ay|[1-[ay -T,y]]

[T.x—T,y| < q max {” fx—ay|, |

1+ x-T,y| ’ 1+[T,x—gy|
loy - T.yl[1-[Tx - gy]] 1)
1+]gy-T,Y|
| fx— fay|| <[Tx— x| +[Tx =T,y +[Ty-oy|+|ay- x|  (1.2)
llay — gfx| < [Tox = gy || +[Tx =T, y[ +[T,y — ]|+ gy - x| (1.3)
forall x,y in X, where 0<q<1,

(1-2) f(X)+AT,(X) < g(X) (1.4)
(1 1) g(X)+ uT,(X) < F(X) (15)

for all A, (0,1], the sequence {xn} associated with the mapping T,,T,, f &g
is defined by

Xona € g~ I:(l_ C2n) X + Con 1 X5, (1.6)
X2n+2 € f - I:(l_c2n+l) gX2n+1 + C2n+lT2X2n+l:| (17)
n=0,1,2,.....

Where X, is an arbitrary point in X and {y,} is the sequence defined by
Yona = DXony & Yo =0%,, forn=12,.and {c,} satisfies condition (i), (ii), and
(iii) given above. If {yn} converges to a point u in X, then u is the unique

common fixed point of T,,T,, f &Q.

In our present paper we use another contractive condition in place of
(1.2).

2. MAIN RESULT:

Theorem 2.1: Let X be a closed convex subset of a normed space N . Let T,T,
be mappings of X into X andlet f &g be injective and continuous mappings
of X into X satisfying:
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” fx _T1X|| [||gy -T, y|| + ||T1x - gy||]
| x—ay[+[T.x—gy]
[Tox=ay|[]| 5 =Tx]|+ gy - T,y]]
| x—ay|+[T.x—gy]

lay T, y|[1+] T[]
1+ || fx — gy||

fx—=T.x||lay -T
|-y -Tosl | fx_gy"} @
[ %~ gy

with (1.2), (1.3), (1.4), and (1.5). Also the sequence {x,} associated with the

ITx-T,y|<q max{

mappings T,,T,, f &g is defined by (1.6) and (1.7) and {yn} is the sequence
defined by Yy, =, & y,,=0%, forn=12.and {c } satisfies
condition (i), (ii), and (iii) given above. If {yn} converges to a point u in X,

then u is the unique common fixed point of T,,T,, f &g.

Proof: We observe that since f and g are injective and satisfy condition (1.4)
and (1.5) the sequence {x,} defined by the equations (1.6) and (1.7) is unique.
Also from (1.6)
Xona € 97 [ (1=Cpp ) Py +Cy T, |
9%ona _(1_C2n) fXZn
CZn
Taking limit n — oo, we get

:>T1X2n =

. . 0%, —(L-c,,) fX
I|mT1x2n:I|mg one = (1= Con) Py
n—oo n—oo C2n
_u—-(1-hju
h
(as sequence {y,} converges to a point u in X so {y,.} >uU & {y,..}—>u

u

and by condition (iii)).

Similarly from (1.7), we get  limT,x,, , =u

From equation (1.2), we have
” fXZn - fgx2n+1|| < ||T1X2n - fX2n||+ ||T1X2n _T2X2n+1|| +

||T2X2n+1 - gX2n+l|| + ||gX2n+1 - fin ”
09
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And so

Lm” fX2n - fgx2n+1|| < Li_';g{]mxzn - fX2n||+ ||T1X2n _T2X2n+1||+

||T2X2n+1 - gxzn+1|| + ||gxzn+1 - fX2n “}

= rl]m”)/zn o fy2n+1|| < !m{”-rlxm B y2n||+||TlX2n _T2X2n+1||+
||T2X2n+1 - y2n+1|| + ||y2n+1 - Y2n ”}
= u— ful <fu—ul}+u—uf + Ju-uf+Ju-u]
= |u- fu| <0
=u=fu
Also from (1.3)
||gX2n+l - ngZn ” < ||T1X2n - gx2n+1|| + ||T1X2n _T2X2n+1|| +
||T2X2n+1 - fX2n||+ ||gxzn+1 - fX2n+1||
= !E?O||9X2n+l - ngZn ” = LEE”yZMl - gyZn ” = ”U - gU” <0
It follows that u=gu.
Further using inequality (2.1), we have
o =Tou] < Ju = 9%yp.a |+ ]| 9Xen s — Tt
<Jlu= 9% [+ (1= Cs0 ) By +CoTyXy, — T,

<fu = gXop |+ (1= Con )| BXon = Toli[|+ €50 [TiXon = T

Ju=T,ul| < fJu = gXyp.a|+ (1= Cyp )| %50 = Tou[ +
q max | %, —T1x2n||[||gu ~Tu+ [T, gu||]
| %20 = quf|+ [Tz, — gu
Ty X0 — gu||[|| X, = To%, |+ U —T2u||:|
10 = ul|+ [TyX, — gu
Jou —T2u||[l+ | %, _T1X2n||]
1+ fx,, — gu

X, =T X, [[Ou—=T,u
I || f)l( Zﬁ”gu” : ”” X, —9U||}
2n

Assume that T,u # U, we have on letting n —> o,
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Ju=T,ul<0+(1-h)]u—T,ul+hg max{0,0,|u—T,u|,0,0}
<(1=h)|u=T,u||+ haju = T,ul|
<(1-h+hq)|u—T,u]

a contradiction, and so T,u=u.
Similarly,

lu=Toul| <u= X, [+ ] Foneo = Tol|
<[u = | +](1= Cont) Oy + ConaToXon = Tl
<fu= X[+ (1= Conea )| 9%ona = T+ Copg [Tl = Ty Xl
< U= B+ (1= Copet )| 9% = To]| +
| fu _TluH[ngzm ~ Ty Xana | +[[Tiu - 9X2n+1H]
[ fu— 0%y + [Tt = 9%, |
[T = 9%, [H fu =T +]9%,., _T2X2n+1H]
[ fu = o+ [T = 9%, |
|9%21.. _T2X2n+1H[1+ | fu —T1UH:|

1+ fu— g%,

[fo Tl —Toanal gy
H fU - gX2n+1H

Assuming that T,u # U, we have on letting N — o,
Ju—T.u[ <(1-h)|u-Tu|+hg max{0,0,0,0,0}
= [u-Tu||<(1-h)|u-Ty|
a contradiction , hence Tu=u.
We have therefore proved that u is a common fixed point of T,,T,, f &g.

To prove uniqueness: Suppose that v be another fixed point of
T,T,, f &g.Then,

11



INSPIRE ISSN: 2455-6742
Vol 01, May 2016 No. 02 07-12

Ju—v]=Tu-Tv|

= u-v|<q max{

<q max{

| fu-Tu[[ v —T,v] +[Tu - gv]]
| fu—gv]|+[Tu-gv|
[Tou—gv||[] fu Tl +]lgv ~T,v[]
[ fu—gv]+[Tu-gv|
ov—Tov[[ 2+ fu—T,ul ]
1+||fu—gv|

| fu-Tu[|gv-To] [ fu- 9"”}
| fu—gy|

Ju—ul[Jv=vi+Ju—vi]
Ju=v+[u—v|

Ju=vl{Jlu—ufl+v=v]]

fu v+ u ]

o[+ -ul] fu-uflv—v]
e L TR
ol Ju]

=[u-v|<gfu-v|

Therefore (

1-q)fu-v|<0 (0<g<1)

=>Uu=Vv

Hence u is a common unique fixed point of T, T,, f &g.

1.
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ABSTRACT

Semiconducting optoelectronic materials play functional role in variety of
applications due to their extraordinary optical, electrical and magnetic properties.
The modification of the optical, electrical, magnetic and physical properties of
semiconductor materials is possible by varying  sizes, structures and
morphologies. The Cadmium Sulphide (CdS) is a I1-VI Semiconductor materials
with a direct band gap of 2.42 eV at room temperature with many outstanding
optical properties which have promising applications in multiple technical fields
including solar cells, detectors for laser and infrared , gas sensor , luminescence
devices and optoelectronic devices .

The Cadmium Sulphide (CdS) nanoparticles of different sizes were
synthesized by chemical method using Merceptoethenol (C,HsOSH) as a capping
agent. Merceptoethenol capped CdS quantum dots were obtained in aqueous
solution by using Cadmium Chloride (CdCl,) as Cadmium source and Sodium
Sulphide(Na,S) as a Sulphur source. Merceptoethenol as capping agent was used
to control the size of the nanoparticles and its concentration was varied to obtain
the different sizes of CdS nanoparticles.

X- Ray Diffraction (XRD) technique was used for structural
characterization of nanoparticles of CdS, which verify the crystalline form. The
average size of the nanocrystallites was measured by Debye-Scherrer formula
and the particles size lies in the nm ranges. The optical characterization of the
nanoparticles of CdS was carried out by UV- Visible absorption spectra and the
optical band gap of synthesized CdS nanoparticles was match the theoretical
range.
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1. INTRODUCTION:

Nanoparticle or an ultrafine particle is a small solid whose physical
dimension lies between 1 to 100 nanometers. Nanotechnology is the coming
revolution in molecular engineering, and therefore, it is curiosity-driven and
promising area of technology. The field of nanoscience and nanotechnology is
interdisciplinary in nature and being studied by physicists, chemists, material
scientist, biologists, engineers, computer scientists, etc.

Research in the field of nanoparticles has been triggered by the recent
availability of revolutionary instruments and approaches that allow the
investigation of material’s properties with a resolution close to the atomic level.
Strongly connected to such technological advances are the pioneering studies that
have revealed new physical properties of matter at a level intermediate between
atomic / molecular and bulk.

CdS is an excellent material for optoelectronic applications. It is used for
detection of visible light having a maximum sensitivity near 2.4 eV; which
corresponds to its band gap. Absorption in bulk CdS is excitonic in nature with
binding energy of exciton ~28 meV, which is responsible for charge carrier
generation. CdS a direct band gap material (I11-\VVI)can be used in the fabrication of
optoelectronic devices such as solar cell, laserlight emiiting diodes,
photoconductors and other optical devices based on its non- linear properties. It
has wide biomolecular applications such as selective ion probes, fluorescence
labeling, and targeting cancer cells. In particular, chalcogenides such as CdS have
received much attention for potential applications in future optoelectronic,
nanodevice [1-3] and biological labeling [4] due to the tunable electronic band
gap depending on size and shape of nanocrystals [5,6].

The present paper deals with the synthesis of CdS nanoparticles using
environment friendly, safe, inexpensive, facile and non -organometallic synthetic
route and a systematic study of the CdS nanocrystals samples with varying
concentration of cappingagent Mercaptoethanol solution. The CdS nanoparticle
has been characterized by XRD and UV- Visible absorption.

2. EXPERIMENTAL:

2.1 Synthesis of CdS nanocrystals

The Cadmium Sulphide (CdS) nanoparticles of different sizes have been
synthesized by chemical method using Mercaptoethanol (C,HsOSH) as a capping
agent. Mercaptoethanol capped CdS quantum dots were prepared in agueous
solution by using Cadmium Chloride (CdCl,) as Cadmium source and Sodium
Sulphide (Na,S) as a Sulphur source. The concentration ofMercaptoethanol
capping agent was varied to obtain nanoparticles of CdS of different sizes.

The weight of various chemicals taken for preparing the solution is given
in Table (1).
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Table (1): Quantities of different Chemicals

S. Sample Concentration Quantity of chemicals (for 0.01M in 100
No. Name capping agent ml)
(In ml)
Cadmium Sodium
Chloride (CdCly) Sulphide(Na,S)
1 CdS -1 0.07 0.1834gram/100ml | 0.078046gram/100ml
2 Cds -1l 0.14 0.1834gram/100ml | 0.078046gram/100ml
3 CdS - I 0.21 0.1834gram/100ml | 0.078046gram/100ml
4 CdS - IV 0.28 0.1834gram/100ml | 0.078046gram/100ml
5 CdS -V 0.32 0.1834gram/100ml | 0.078046gram/100ml

The aqueous solution of mercaptoethenol was added drop-wise in the
solution of CdCl, with the help of burette at the rate of 1 ml per minute stirring
the solution continuously by using magnetic stirrer. Thereafter, solution of Na,S
was mixed drop-wise in the solution of CdCl,and mercaptoethanolwith the help of
burette at the rate of 1 ml per minutestirring the solution continuously by using
magnetic stirrer. Subsequently yellow colour solution obtained was kept for 24
hrs.Yellow precipitate settled down in the bottom of the flask. This precipitate
was removed and washed several times with the double distilled water.

2.2Characterization

The CdS powder samples were characterized by using Bruker D8 advance
X — Ray diffractometer and the optical absorption using Perkin Elemer Lambda
950, spectrometer at IUC Indore.

3. RESULTS AND DISSCUSSIONS:

3.1 XRD structural analysis

The structural properties of CdS nanoparticles were determined by X -
Ray Diffraction (XRD).The XRD patterns give information about the crystal
structure. The structural characterization of CdS nanocrystals were performed by
an X - ray diffractometer (Bruker D8) using CuK, radiation (A =1.5418 A) for
20 values from 20° to 70°. X- ray diffraction pattern of CdS nanocrystals is
shown in Figure (1). In the XRD of CdS nanocrystals, it appears that all CdS
samples is have hexagogonal phase with peak at 20 = 26.9473corresponding to
(100) planes.
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Due to the size effect, the XRD peaks tend to broaden and their widths
become larger as the particles become smaller. As no extra peak was observed in
the XRD pattern, clearly this indicated the phase purity and absence of impurity
phases.
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Figure (1) : XRD pattern of CdS naocrystals of different concentration of
Mercaptoethanol

The crystallite size of the CdShave been determined from the broadening

of diffraction peaks, using Debye Scherrer’s formula [7],

D=kMBcos®, (1)
where ) is the wavelength of X — ray used (A =1.54 A), B is the FWHM, k is
Scherrer - constent, D is crystallite size and 0 is the Bragg,s angle.

The crystalline size calculated from above formula was found 3.631 nm
for CdS - | sample, as the concentration of Mercaptoethanol increased in the CdS
preparation , particle size decreases and reaches to 2.044 nm for CdS - V sample.
The trend of variation of crystal sizes with concentration of Mercaptoethanol are
shown in Figure (2). It is seen that crystal size decreases on increasing the
concentration of Mercaptoethanol capping agent.
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Figure (2): Variation of Crystal Size of CdS nanocrystals
with capping agent concentration

3.2 UV -Visible absorption study

The optical studies of Mercaptoethanolcapped CdS nanoparticles were
done by UV- Visible absorption.The optical absorption of prepared CdS
nanocrystals were recorded at room temperature using LAMBDA 950
UV/Vis/NIR Spectrophotometer. The absorption spectra of CdS nanocrystals for
different concentration of Mercaptoethanol taken at room temperature are shown
in Figure (3). From the spectrograph it is clear that, the absorption edges of the
samples are found in the range 420 - 520 nm. The optical absorption edge of the
nanoparticles is shifted towards the shorter wavelength region with the increase of
the concentration of capping agent Mercaptoethanol.
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Figure (3) : Absorption spectra of CdS nanocrystals with different
concentration of Mercaptoethanol
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The optical band gap (Eg) of CdS nanocrystals were determined from the

absorption spectrum using the Tauc relation -
- % ............... )

where «a is absorption coefficient (cm™), hu the photon energy (eV). A and n are
constants. A is complex parameter , which depends on temperature, photon
energy, phonon energies etc. The n values 0.5, 1.5, 2 and 3 are for allowed direct,
forbidden direct , allowed indirect and forbidden indirect transition respectively
[8]. Eq is the direct band gap of the CdS material.

A plot of (ahv)? vs hvu should be a straight line whose intercept to the
hv axis gives the optical band gap. The graphs(ahv)®vs hu for various
concentration of Mercaptoethanol are shown in Figure (4).
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Figure (4) : Determination of band gap for CdS nanocrystals

The experimental values of band gap are found to be larger than that the
bulk material (Eq = 2.42 eV) for all CdS samples with different concentration of
capping agent.These are given in table (2).There is blue shift of band edge energy
for CdS samples with different concentration of capping agent. This is attributed
to size quantization in nanocrystals. The sizes of the nanoparticles decreases with
the increasing the concentration of capping agent. The size quantization occurs
due to confinement (localization) of electrons and holes in an extremely small
volume of space of the nanocrystals. So , the band gap increases with the increase
the concentration of capping agent or decrease of nanocrystal size.

The crystal size or nanoparticle size (diameter) of CdS nanocrystals was
calculated from Effective Mass Approximation (EMA) theory by using following

energy gap equation [9,10],
h?m2 | 1 1
AE (BV) = 22 |my + m—;l ................. (3)

AE = Eqdot' Egbulk ................. (4)
where EqdoilS quantum dot energy band gap , Egouibulk energy band gap, r is the
radius of quantum dot and mg*(me*=0.19 m,) and m*,(my*=0.80 m¢)values of
effective mass of electrons and holes for the CdS nanocrystals.

TABLE (2): Absorption spectra for various
concentration of capping agent

Concentration | Effective Energy Radius of | Diameter
> | sampl i t| BandgapE ticl of
no ample | capping agen and gap Eg particles !
' (In ml) (IneV) (In nm) pIE.IFtIC|e\S
1 Cds - 1 0.07 2.65 3.253 6.508
2 Cds - 11 0.14 2.66 3.185 6.371
3| CdS-1l 0.21 2.67 3.121 6.242
4| CdS-V 0.35 2.69 3.003 6.006
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The effective band gap E4 of the CdS nanocrystals is obtained from the

absorption spectra and the increase (AE) has been determined by
subtracting band gap for bulk 2.42 eV. The particle size estimated using the
above relationis given in column 6 of Table (2). It is clear from the table that the
particle sizes were reduced as the capping agent concentration is increased.

4. CONCLUSIONS:

o

© N

10.

The important conclusions drawnin the present investigation are follows:-
CdS nanoparticles have been synthesized by using Mercaptoethanol as a
capping agent through a chemical synthesis route at room temperature.
XRD studies reveal that the CdS nanocrystals have hexagonal structure ;
crystal sizes obtained by XRD are below 4 nm using Scherrer’s formula.
From XRD analysis it is found that there crystal size decreases by
increasing the concentration of capping agent Mercaptoethanol.

For CdS nanocrystals , there is uniform absorption in the range 200 — 800
nm, absorption edge is observed in the region of 420 — 450 nm. The
absorption edge is found at lower wavelength indicating increased band
gap energy as compare to bulk CdS.

Blue shift is observed in the absorption spectra with decreasing size of
particles. This may be consequence of quantum confinement effect.

The Band gap of CdS nanocrystals have been obtained by absorption
studies and increase in band gap has been observed on increasing the
concentration of capping agent.
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ABSTRACT

The aim of this paper is to determine the solution of a mathematical
equation related to ‘Atomic Waste Disposal Problem’ with the help of I-function.

1. INTRODUCTION:

For several years the Atomic Energy Commission (now known as the
Nuclear Regulatory Commission) had disposed of concentrated radioactive waste
material by placing it in tightly sealed drums, which were then dumped at sea in
fifty fathoms (300 feet) of water. When concerned ecologists and scientists
questioned this practice, they were assured by the A.E.C. that the drums would
never develop leaks. Exhaustive tests on the drums proved the A.E.C. right.
However, several engineers then raised the question of whether the drums could
crack from the Impact of hitting the ocean floor. "Never," said the A.E.C. "We'll
see about that," said the engineers. After performing numerous experiments, the
engineers found that the drums could crack on impact if their velocity exceeded
forty feet per second. The problem before us, therefore, is to compute the velocity
of the drums upon impact with the ocean floor. To this end, we digress briefly to
study elementary Newtonian mechanics.

Newtonian mechanics is the study of Newton's famous laws of motion and
their consequences. Newton's first law of motion states that an object will remain
at rest, or move with constant velocity, if no force is acting on it. A force should
be thought of as a push or pull. This push or pull can be exerted directly by
something in contact with the object, or it can be exerted indirectly, as the earth's
pull of gravity is.

Newton's second law of motion is concerned with describing the motion of
an object, which is acted upon by several forces. Let y(t) denote the position of
the center of gravity of the object. (We assume that the object moves. in only one
direction.)
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Those forces acting on the object, which tend to increase y, are considered
positive, while those forces tending to decrease y are considered negative. The
resultant force F acting on an object is defined to be the sum of all positive forces
minus the sum of all negative forces. Newton's second law of motion states that
the acceleration d®y/dt? of an object is proportional to the resultant force F acting
onit; i.e.,

d?y/dt® = F/m 1)

The constant m is the mass of the object. It is related to the weight W of
the object by the relation W = mg, where g is the acceleration of gravity. Unless
otherwise stated, we assume that the weight of an object and the acceleration of
gravity are constant. We will also adopt the English system of units, so that t is
measured in seconds, y is measured in feet, and F is measured in pounds. The
units of m are then slugs, and the gravitational acceleration g equals 32.2 ft/s°.

The I-function of one variable is defined by Saxena [1, p.366-375] and we
will represent here in the following manner:

[@j,2))1,n][@ji,%1)n+1,p;]

o - s
Totiair Xt ) mb O Bime s 1) = 2 1. 0(8) X7 (2)

where ® = V(- 1),

0(s) = [;2, T(bj—B;js) [Tz, T(1-aj—q;s)
{=1[qu=im+1 F(l_bji+Bjis) H]P=in+1 F(aji—ajis)]

integral is convergent, when (R>0, S <0), where

n pi m qi
R= X aj_Eaji"'sz_ZBji: (3)
j=1 j=n+l j=1 j=m+1
pi qi
S= aji_ZBji )
=1 j=1

larg x| <% Rm, Vie(l,2,..,r).
2. MATHEMATICAL MODEL.:

We return now to our atomic waste disposal problem. As a drum descends
through the water, it is acted upon by three forces W, B, and D. The force W is
the weight of the drum pulling it down, and in magnitude, W = 527.436 Ib. The
force B is the buoyancy force of the water acting on the drum. This force pushes
the drum up, and its magnitude is the weight of the water displaced by the drum.
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Now, the Atomic Energy Commission used 55 gallon drums, whose
volume is 7.35 ft>. The weight of one cubic foot of salt water is 63.991b. Hence B
=(63.99) (7.35) = 470.327 Ib.

The force D is the drag force of the water acting on the drum; it resists the
motion of the drum through the water. Experiments have shown that any medium
such as water, oil, and air resists the motion of an object through it. This resisting
force acts in the direction opposite the motion, and is usually directly proportional
to the velocity V of the object. Thus, D = cV, for some positive constant c. Notice
that the drag force increases, as V increases, and decreases as V decreases. To
calculate D, the engineers conducted numerous towing experiments. They
concluded that the orientation of the drum had little effect on the drag force, and
that D = 0.08 V (Ib)(s)/ft.

Now, set y = 0 at sea level, and let the direction of increasing y be down-
wards. Then, W is a positive force, and B and D are negative forces.
Consequently, from (1),

d?y/dt* = (W — B — cV)/m = (g/W) (W — B —cV).

We can rewrite this equation as a first-order linear differential equation for

V = dy/dt; i.e.
dVv/dt + (cg/W)V = (g/W) (W - B). (4)

Initially, when the drum is released in the ocean, its velocity is zero. Thus,

V (t), the velocity of the drum, satisfies the initial-value problem

dv/dt + (cg/W)V = (g/W) (W -B), V(0) = 0. (5)
and this implies that ;
V(t) = [(W - B)/c] [1 -t “¥™)1]. (6)

Equation (6) expresses the velocity of the drum as a function of time. In
order to determine the impact velocity of the drum, we must compute the time t at
which the drum hits the ocean floor. Unfortunately, though, it is impossible to
find t as an explicit function of y. Therefore, we cannot use Equation (6) to find
the velocity of the drum when it hits the ocean floor. However, the A.E.C. can use
this equation to try and prove that the drums do not crack on impact. To overcome
this problem here we are giving a solution of equation (5) in terms of I-function,
which can be helpful to determine the solution of the above raised problem, since
I-function may be reduced to Legendre functions, Bessel functions etc.

3. Solution in terms of I-function:
Choose concentration V(t) in terms of I-function [1] as

(@j,99)1,n].[(@j1,9%i)n+1,p;]

[
— m,n i
V(O = Ipjiaur 28 15,8, ] 1031 Bi)me .0, (7)

bi.qQiTr

where pu > 0, |arg z| <% nR, where R is given in (3).
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Now differentiate it with respect to t, we get

av(t) _ 1. mn+1 (O N7) R
dt - ? pi+1,qi+1:r[Ztu|__________'(1’u)] (8)

Now after using (7) and (8) in (5), we get following result

1 mn+1 Y (Y A Cg mn w @541, [@ji %) n+1,p]
o a1 (2] + W Torair 28 o, 80) 0318500 m s
= (g/W) (W -B), V(0) =0. (9)

where u> 0, |arg z| <% nR, where R is given in (3)..
4. SPECIAL CASES:

On specializing the parameters, I-function may be reduced to H-function,
G-function, Lauricella’s functions Legendre functions, Bessel functions,
hypergeometric functions, Appell’s functions, Kampe de Feriet’s functions and
several other higher transcendental functions. Therefore the result (9) is of general
nature and may reduced to be in different forms, which will be useful in the
literature on applied Mathematics and other branches.
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ABSTRACT

The object of this paper is to evaluate an infinite integral involving the
product of I-function, generalized hypergeometric function and confluent
hypergeometric function by means of finite difference operations E. As the
generalized hypergeometric function and I-function are of a very general nature,
the integral, on specializing the parameters, leads to a generalization of many
results some of which are known and other are believed to be new.

(Key Words- Generalized Hypergeometric Functions, I-function and E-operator).

1. INTRODUCTION:

The I-function introduced by Saxena [7], will be represented and defined

as
a;, a; aii, a;; 1
Z’ril:gﬁr x (1 1)1,n ( i ]l)n+1,pi :2_ H(E)xfdf, (1.1)
(51 B1) e (Biio Bji) 1| 2™
where
6(¢) = [I7Z T — B;§) Ilj=aT(A — a; + a;8) (12)
M0 T = b+ Bii) T, (@ — )]

For the nature of contour L in (1.1), the convergence, existence conditions
and other details of the /-function, one can refer to [9].

2. FORMULAE USED:

The following formulae will be used in the present work:
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From Erdelyi [3, p. 337, eq. (8)]:
r F(v+s+1)r(-v +s+1/,)

fxs—le—ax%’v(ﬁx)dx — '81/+1/2

; O(s —p+ D(a+P /vt
20—
e F, [(V + s+ 1/2), (V —u+ 1/2); (s—u+ 1);2a il (2.1)
Re(s) > |Re(u)| — 1/2.
The finite difference operator E is [(4), p. 33, withw = 1]:
Eof(@) =fla+1) (2.2)
and
I['(ax+n)
= - 2.3
3. IMPROPER INTEGRALS:
The integrals to be established in this section are
¢ a;, a; a;, a;;
fxs_le_l/zﬁxW (Bx )plql ( j ])1n ( ji Jl)nﬂ,pi
0 ( Bj)lm ( Jl'ﬁji)mﬂ,qi
p mil2+2+1 B (1/2+v—s,k), (aj,aj)lln, (aji. ji)n+1,pi 3.1)
pit4.qi na ) .
( Bj)lm ( Jl'ﬁji)m+1,qi’ (‘u' -S k)
1
Re(B) > 0,Re(s + b;/B;) > |Re(v)| - G=1,.....k).
[ ot e U () B B )
% ITr:L'n, Zxk (aj'“i)1,n’(aﬁ'“ﬁ)n+1.pi dx
puavr (bj'ﬁj)1_mJ(bji'ﬁji)m+1‘qi
(Ap) ch 2
=B~ Xh=o (By )hZIBhd 1;7:-:12+ql+1 i
X Z'B_k (1/2iv_dh_s’k)’(aj’aj)1.n'(aji'aﬁ)n+1.pi (32)
©381), yy (BjiBji) g g, (HS =)

where
Re(s+bj/ﬁj)> |[Re(W)|—1/2;(j=1,...... k).
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4. PROOFS:

The integral (3.1) can be evaluated by replacing the I-function on
the left hand side by its equivalent contour integral (1.1) , changing the
order of integration , which is justified due to the absolute convergence of
the integrals, evaluating the inner integral with the help of
[3,p.337,eq.(8) with a = 8/2].

The integral (3.2) can be obtained on multiplying both sides of (3.1)
by

[, T(4; +6)C®
j=1T(B; +6)
and applying the operator exp(E§Es), we get

Y T(4; +6)C?
7:1 F(Bj + 6)

exp(ESEs)

-1
f xSt eTﬁxm,v(ﬁx)Iﬁgbr[zxk]dx
0
B d —symn+2 K (1/2 i v —S, k), (aj, aj)l,n' (aji, (in)n_'_l’pi
= exp(Es Es)B "I gie1,r | 2B
(5.B), . (s ﬁﬁ)mﬂ,qi' (u—s,k)
Y T(4;+6)c°
7:1 F(Bj + 6)

Expanding both sides of (3.1) and using (2.2), we get

w . _ u . 6+h

Z f xs‘leTlﬁxWMV(ﬁx)l".l’"..r[zxk] =1 F(Aj tot h)C

h=0 ' puai v_T(Bj+6+h)h!

[T, T(4; + 6 + h)Coth
Y1 T(B;+6+h)h!

k (1/2 +v— dh — S, k), (aj, aj)lln, (aji, aji)n+1,pi . (42)

(5:.8), . (s ﬁﬁ)mﬂ,qi' (u—dh—s,k)

(4.1)

='B_S

mmn+2
* pit2,qi+1r Z:B

Now using (2.3) for changing the order of integration and
summation on the left-hand side , which is justified due to
[(2),p.178 § 75 (I)] , and replacing A; + § by 4; and B; + 6 by B;, we
get (3.2).

5. SPECIAL CASES:

1. On taking u=2,v=3,d=1 in (3.2) and using the result [5,
pp.105,106]:
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F(l i lavly Labassn 1;4x )
241 Za 2 ’Za 2 Zra' ,a ; X

= oFl(—; a; x) oFl(_} b; x)

and
11
oF3 (a,b a;b,— b b+§ 7% )= 1F1(a; b; x) 1F,(a; b; —x)
we obtain
[ s-1 _—1!335 1 1 k
fx e 2" W, (Bx) oF; (—;Bl;ZCx> oF1 (—;BZ,4Cx)Ip g 2x]dx
0
y B 1y
Y (Br/2+ By /D0 (F+ % -3) €
n=0 h!(B)r(Bn(By + B, — 1),p"
iz L |@/2xv—dh—s,k), (a;, aj)l’n, (a;, aji)n_'_l’pi 5.1)
pit2,qitlr .
( ﬁj)lm ( ]“ﬁﬁ)m+1,qi' (‘u_dh_s’k)
and
f x5 1e 2 Prw, L (Bx) 1Fy (Al;Bl;z(\/ﬁ) )
0
x 1Fy(Ay; By — 2V Cx) Iy [2x¥]dx
(A)h(B1 — AppCh
P Ly B (38:) (zB1+73) B"
2 2),
(1/2+v—-dh—s,k),(a;,a; ,(a--,a--
L e |28 ()1 (G181 (5.2)

( ﬁj)lm ( ]l'ﬁji)m+1,qi’ (u—dh —s,k)

respectively. The conditions of validity for (5.1) and (5.2) are same as
given with (3.1).

2. Ifwetake f=d=C=u=v=1,u= v+% in (3.2), replacing I-
function on the right-hand side by its equivalent contour integral
(1.1) then changing the order of summation and integration and

evaluate the inner summation with the help of Gauss’s theorem
[1,p.61], we find that
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[ wtenmw, s @) R B
0

x [T [zxk

(aj'“j)Ln'(aji'“ji)n,,l,pi] do

puqir (b]"'gj)1,m'(bﬁ'ﬁji)m+1.qi
ey
[(B, — A1)
m+1,n+1 (1/2_S_V’k)’(af'af)1,n'(aﬁ'aﬁ)n+1,pi'(31_S_v_%’k)
X Ipi+2,qi+1,r 1 ,(5:3)
(Bi=A1=5-v=2k)(01.8)), 1y (BjiB)1) g,

provided

R ) s IR L k),R(B, — A 1
<p+,8—j>>| W1 =5 G =1, ), (1— 1—s—v—z>

> 0.

3. Next taking f=C=d=u=v=1um =%+/1,/31 =1+4+21v=
0in (3.2), replace sbys + A — %, I-function on the right-hand side

by its equivalent contour integral (1.1), changing the order of
summation and integration, evaluate the inner summation with
the help of Watson theorem [1,p.189,eq.(6)] finally expressing
1F1 and Whittaker function W, (x) in the modified Bessel function

of the first and second kind respectively we obtain,

[ S+/1—1—1 —lx
jx 27 "e 2 Wy, (x) 1F1(Ay; By x)

mn k (a;, aj)l,n' (aji “ji)nﬂ,pi

. zZX
Pt (B B) 1 (bji'ﬁﬁ)mﬂm
=vVnr(A+1)

(1 - ﬂ. - S i v, k)) (aj' aj)l,n' (aji' aji)n+1,pi’ (

(1 =500 By), e (Bji Bit) oy g (7= 7 - 7

m+1,n+2
o

pi+4.q;+37r

provided R(s +/1+%) > RO G = 1, e k), RA =) > =2
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4. In (3.2), on taking r = 1 the I-function reduces to Fox’s H-function.
Replacing k by m/t and by applying the following multiplication
formula for H-function [6, p. 1029]:

H™™ | 2t (o) aj)l’p = (2m)A-DAB R [(th)txm (a(6.a). ;)
p.a
(b;. ), , o (A, 5;)B;)
and by applying Gauss’s multiplication theorem, we obtain a
known result due to Singh [8]:

.fx 1o 3Py, (Bx) F,(Ay; By; CxM)Hy o | zx™/t (e ])”’ dx
uv w DBus y |
d (b;. ), ,
d
_ (Zﬂ)(l—t)A+%(1—m)tB s— v——ﬁ z‘” Hljl=1(Aj)rmr cr
r=0 [T}, (B;), I B
1
s | @D (a(m7z-s-rd+v),1).{(A(tq;), )} 55
prezmatm | pme (A6 ) B (AGmp—s =14, 1) |
where
A= k+l————B Z a+———+1r
2 2’ j= b ; =1 2 2

J=1 J=1

{(A(t,6,),y,)} stands for {(%,yr)}, ...... {(8r+t_1,yr)};m,d and t positive

integers and (A(t, +a), 1) denotes {(A(t, @), l)t}, (A(t,—a),1).

The integrals (5.1), (5.2) and (5.3) give some very interesting cases
by reducing some or all the functions occurring in the integrand on the
left. By proper choice of parameters F; can be reduced to a Bessel
function and can also be transformed to ;F; by using Kummer’s second

theorem [5, p. 126] the ;F; can be reduced to a Whittaker function
My m(x), generalized Laguerre polynomials L%(x), Weber’s parabolic
cylinder function D,(x) and modified Bessel function of the first kind

I,(x).
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ABSTRAT

The aim of this paper is to obtain the value of the charge at any time t in a
simple electric circuit consisting of resistance, inductance, capacitance and a
source of electromotive force EoP(t), when P(t) is taken in terms of the Fox's H-
functions. This function is believed to be quite general nature because it includes
a number of well known elementary functions as its particular cases. Evidently,
therefore, our results would apply to a wide variety of useful functions (or
products of several such functions) occurring frequently in mathematical physics

and engineering.

1. INTRODUCTION:
The H-function of one variable [8, p.10] is defined as:
Hoq [xI (o Ejﬁjj] = (1/27) [ 0(s) %’ ds

where i = \/(— 1), m n
Elr(bj - BjS) j1_=11 F(l —ajt OLjS)

0 (s)= 5 5
n [(1-bi+Ps) 11 I'(a-oys)
j=m+ j=n+
where n p m q
z O(.j—ZO(,j+ZBj—ZBjEM>O,
j=1 j=n+1 j=1 j=m+1

and |arg x| <% M.
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sequel

The following integral which is a special case of [2] will be required in the
(@jApa,
f xP~1(c + bx)*eR*/?Lsin{w(t — x)}H Nzx*(c + bx)6|(bj,‘B;):g]dx

(=D (w)2k+1(£)2k+ ™ (—p /)™ (Rt /2L)"
rim!

_ +1 .- oo
_tp ¢ Zr,k,m:O

% HM+1,N+1 [ tu € | (1—p—r—m,u),(a]-,Aj)Lp,(l,e) ]
P+2,0+2 (A+m,€),(bjBj)1,0,(~1-2k—p-T-mu)

(1.2)

PR (=D (@)2KH ()27 (b /)™ (R/2L) "™ (=1)m
— tp+1C AZr,k Ozr -

><HM+1N+1[ o e|(1_.0_7"'“)v(aj,Aj)l,P’()l’f) 1
P+2,Q0+2 (A+m,€),(b;Bj)1,0.(-1-2k—p-1,1)

(1.2)

_ 4p+1 .~ Rt/2L yoo [r/2 r— 2k( D (@)1 ()" (=b/e)" T (2+7-m)
thic e Yr=oXg=o Lm= I(2+2k)(r—2k—m)!m!

M+1,N+1 U € (1_p_mvu)’(aj,Aj)1,P!(’L€) r—-2k-m
X HP+2 ,Q+2 [z |()L+m,e),(bj,Bj)1‘Q,(—1—p—r,u)](_R/ZL)

(1.3)

(ajAp1p

Throughout this paper Hy, [ |(b,B_)1Q
1,7J7L

] stands for the well-known Fox's

H-function. An interesting and useful account of this function can be found, for
example, in [4] and [7]. Here (a;A;),p abbreviates the parameter sequence
(a1,A1), ....,(apAp), and so on. Also, the symbol [r/2] stands for the greatest
integer in r/2.

The conditions of validity of the integral are Re(A) > 0, min(u, €) >0,t >0,

|bt/c| <1, A>0, |arg z| <(1/2) Ar, Re(p) + u min, <<y {Re(b;/B;)} > 0 and the
series on the right-hand side converges absolutely, it being understood that

A=Y 1A =Y v 45+ 2] B Z] —m+1 B (1.4)

Proof of (1.2):

To prove (1.2), we make use of known results [4, p.2, (1.1.1)] and [5, p.58,

3)] in (1.2).
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Proof of (1.3):

On using the contour representation for Fox's H-function occurring on the
right-hand side of (1.1), changing the order of integration and summation with
respect to r, we find that R. H. S. of (1.1).

(—l)k(a))2k+1(t)2k+m(—b/6)m

— $+p+1l —A N0

x (=) [, T, T(b; — Bjs) [IL1 T(1 — a; + 4;5)

21l

X [H?=M+1 F(l - b] + B]S) l_[}:=N+1 F(aj - AjS)]_l

TF(A+m—es)T(p+m+us
T'(A—es)T'(2+2k+p+m+us)

X (zt“c®)*®

x 1F1[p + m + us; 2 + 2k + p + m + us; Rt/2L] ds (1.5)

Now using Kummer's first formula [5, p.125, eqgn. (2)] in (1.5) and then
applying series representation for ;F; thus obtained, we easily get

(—l)k(w)2k+1(t)2k+m

rim!

R.H.S. of (1.1) = tPFicAeRt/2L Y™

x (=b/c)™(Rt/2L)" (2 + 2Kk),

x MALN+1 [zt%c€| (1-p-mu),(ajAj)1,p,(A€) 1

P+2,Q+2 (A+m,€),(bjBj)1,0.(—1-2k—-p-T-mu) (1.6)

Finally, applying to the results [5, p. 56, eq. (1); p.57, eqn. (7)] in (1.6), we
arrive at (1.3).

2. MAIN PROBLEM:

If we consider an electric circuit consisting of resistance R, an inductance
L, a condenser of capacity C and a source of electromotive force Eop(t), where Eg
is constant and P(t) is known function of time t, the charge q(t) on the plates of
condenser at any time t, satisfies the following second order differential equation

d’q aq , 4q
LF+R;+;=EOP(O (2.1)
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The solution of this differential equation subject to initial conditions q =
Q, i =dg/dt =1 when t =0, is the standard result [6, p.95] and is given below

q(t) = J (&) + > e R/2L [7p(n)eRn/2Lsin{w(t — n)}dn (2.2)
where, for convenience,

J(t) = e “R/2L[Q cos ot + (11/o) sin ot] (2.3)

I, = I + RQ/2L and (1/LC) — (R¥/4L%) = ®* > 0. (2.4)

Now we turn to the problem of finding out the charge q(t) when P(t) is
taken in terms of the H-function. We shall discuss two useful cases.

(i) Solution of (2.1) when P(t) is taken in terms of the H-function
Let

_4p-1 “AgMNy_u €1(@jAj)1p
P(t) =tP~"(c + bt) "Hp ) [zt*(c + bt) I(bj,B,-)l,Q] (2.5)

Putting the above value of P(t) in (2.2) and evaluating the [J-integral with
the help of (1.1) {or (1.2) or (1.3)}, we find that the value of the charge q(t) is
given by

Rt

q(®) =J(t) + %e_ﬂFi(r, k,mt),i=1,23 (2.6)
where j(t), F;(r,k,m,t), (i = 1,2,3) stand for the quantities as given by (2.3),
(1.1), (1.2) and (1.3) respectively and the conditions mentioned after (1.3) are
satisfied.

It is interesting to note that the value of the current dg/dt can also be
obtained from (2.6), by differentiating the series on its right-hand side term by
term with respect to t. The process of term by term differentiation is assumed to
be justified as the H-function being analytic function [4, p.3] and the resulting
series of H-functions obtained in this case will be uniform convergent in any
arbitrary domain 0 < t < a.

A special case of the solution (2.6), which is of practical interest, follows
easily by putting R = 0; thus we arrive at the following solution

q(t) = Q cos wt + (I/®) sin ot

CD* (@)K (OKH™ (=b /) EgtPH

+ C_l Zlic,)mzo

m!L
M+1N+17_,u e ;(1—p—-mu)(a;A;)1,p.(A€)
X HP+2,Q+2 [Zt ¢ |(A+m,6),(bj_Bj)1‘Q,(—1—2k—p—m,u)] (2.7)
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(i) Solution of (2.1), when P(t) is a series of Sines:

If we substitute n = sin@ in (2.2), the values of the charge q(t) is easily
seen to be given by the following equivalent form

E sin~t .
q(t) =J() + w—(z e ~Rt/2L f P(sin0)eRsn0/2Lsin{w(t — sinB)}cosOdO
0

(2.8)
Now on taking
. _woo  pgM+1,N+1r_,(1=p-1h)(aA[)1p,(2-p+T,h)
P(Sm t) - Zr OHP+2 ,Q+2 [ |(3/2—p,h),(bj,Bj)LQ,(l—P,h) ]
. _ . \1-2p ;fM,N . —2n(@jAp1p
sin (2r + 1)t = (Vr/2) (sin t)* =2 Hplo' [z(sin t) 72" b 5)r0) (2.9)

[by virtue of a known result [1, p.705]

in (2.8) and again replacing sin 0 by x, we find that

t
q(t)—](t)+ 0\/_ e Rt/2L f 1=2p oRX/2Lgin{w(t — x)}H [zx~?"]dx

0
(2.10)

Now appealing to a property of the H-function [4, p.4 (1.2.2)] and
evaluating the integral with the help of (1.1) [or (1.3)] withc =1, b, € —> 0, we
get the following value of q(t):

q(®) =J(t) + MB—RUZL i (—w?t?)*(Rt/2L)"

2L 7!
rk=0
M+1N on1(@jAj)1,p,(4—2p+r+2k,2h)
X H P+1, Q+1[ (t) |(2_2p+r,2h).(bj_3j)1‘Q ] (211)
3- Zp\/_
=JjO)+———— 0() Z( + 1)B,.(—Rt/2L)"

(ajAj)1,p,(4—2p+1,2h)

(2—2p+r,2h),(bj_Bj)1‘Q] (2.12)

M+1,N -
X Hp1041[2(8) 2R

where J(t) is given by (2.3) and
[r/2] (¥ (=r)2k2Lw/R)*¥
B, = 2.1
k=0 22k (2.13)
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The conditions of validity of (2.11) and (2.12) are
(i)h>0,t>0,A>0, |arg z| < (1/2)Ar {A is given by (1.4)}.
(i) Re(1 = p) + hmin, . j<y{Re(1 — a;)/A;} > 0.

Thus, when the electromotive force EgP(t) is in the form of series of sines:

0 M+1,N+1p,_,(1=p-1h),(ajAj))1,p.(2-p+T,h)

Bo 2ir=0 Hp+2,0+2 [2l(3/2-p.1),(0; B n0.1-pi)
the value of q(t) is given by (2.11) {or (2.12)}.

The solution of (2.1) given by [3, p.738, (3.4)] is contained in our solution
(2.11). This can be verified easily by puttingR=0,p=0,h=1,A=B;=1(i=1, ..,
P;j=1,..,Q)in(2.11) and appealing to the Gauss multiplication formula therein.

]sin(2r+1)t (2.14)

3. PARTICULAR CASE:

The solutions of (2.1) are quite general in character as these possess
twofold generality. The one is the general nature of the H-function and second is
exhibited by the presence of the general arguments in this function. By making a
free use of results [4, p. 145 to 151], our solutions can be suitably applied to a
remarkable wide variety of useful functions (or product of such functions) that
occur frequently in the problems of mathematical physics and engineering. Here
we mention only some interesting special cases of the solution of (2.1) given by
(2.6).

On takingc=1and b — 0in (2.5) and (2.6), we find that

P(t) = (6~ Hiply [2(8)"] ) 3.1
then

Ey(£)P+! o (—w?t2)k(Rt/2L)T
q(t) :](t)+ 0() e—Rt/ZL Z ( ) ( / )
L r!
rk=0
M,N+1 —2n,(1=p-Tw),(a;Aj)1p
X HP+1,Q+1[Z(t) |(bj,Bj)l,Q:(_1_2k_P_T:u):] (32)
or equivalently,

_ Eo(£)°*! ¢ r
a(t) =J() + TZo(r + DB (=Rt/2L)
(1-pw).(ajAj)1p ]

(bjBj)1,e(—1—p-1u), (3.2)

X HIIDWﬁ,BL[Ztu'
where J(t) and B, are given by (2.3) and (2.13) respectively. The conditions of

validity for the solution can be easily obtained from those given after (1.3).
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ABSTRACT

In this Paper, we represent that process of Photosynthesis in terms of
multivariable H-function, where the result has been performed with respect to
their parameters (these are mainly H,O, CO,, sunlight and chlorophyll) of the
multivariable H-function. On specializing the parameters of the multivariable H-
function involved in the main result, many new and unknown results may be
obtained.

1. INTRODUCTION:

Photosynthesis is the single most important physico-biochemical process
of the world on which the existence of life on earth depends. It is the ability of
green plants only that they utilize the energy of the sun light to produce oxygen
containing organic material from stable inorganic matter by Photosynthesis
process.

Generally, the Photosynthesis is the Physico-Biochemical process, which
produces complex carbohydrates by reaction of water and carbon-dioxide in the
presence of light and chlorophyll.

According to Ruban, Randel and Kamel during the Photosynthesis oxygen
and heavy isotopes of water O®® and H,0"® react and produce O,, which is
obtained by H,0O. This reaction produces complex hydrocarbon's with water Tyagi
[5].

Sun light
12H,0%¥ +6C0,  ————— CgH1,0 + 6H,0 + 60, 0

Amount of complex

food material

Four parameters works to complete this reaction out of which two
supports internally and two externally. In this way the change occurs in
parameters with respect to temperature (6°C to 37°C) these are represented
symbolically in the following way and the internal change of variables depends
upon these abbreviations given by Lax [3].
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1 External
B T(a+y)T(a+&T(B+y)I(B+5)
— > + +
a+y 5 > @iy id) 6H,0 + 60,
u Amount of complex food material 1
el > « @

Here water is evaporated and O, goes to atmosphere we compare it with
the formula given by Erdelyi [2] for simplification of temperature. See Bhatnagar
[1, p.11-16] and Lax [3].

1 t+i

— [N (@ + (B + T (y — OT (8 — t)]dt

2mi

_Ta+y)T(a+8)T(B+y)T(B+5)
- T(a+B+y+68) A, 2)

where Re(a) > 0, Re(B) > O, Re(y) > 0, Re(d) > 0, and a, B, v, & are respectively
denote the parameters water (a), carbon-dioxide (f3), sunlight (y) and chlorophyll
(8). A =const. when o= =7=0=0, then A will be 0.

The multivariable H—function given in [4] is defined as follows:

1
H[Z . ] _ HO!n:ml!nl;"';mr!nr[ . |(aj;0(]-’,...,a]_(r))1‘p; (C;y],)lpl ( (r) (I‘)) 1,pr
S L U O PTG ) e (d“) (r))lqr

]

= (an)r le f b1 €1 o Or GOV o, &2y 2, dEy G (3)

where © = V(- 1),
[j=: T(-aj+%i, -(i)Ei)
Mnsa T@-Zi ,(1)51)1—1 T(1-bj+Xr, 13(‘)51)

llJ(El' ey Er) =

Mt reaP -85 1, ra—cV+v( %)

R m+1r(1 do) 5(051)“]1)1“ » (c(l)—y(l)E,

In (3), i in the superscript (i) stands for the number of primes, e.g., b =
b, b® =b"", and so on; and an empty product is interpreted as unity.
Suppose, as usual, that the parameters
a,j=1,....p; cj V. j=1....pi
b;, j= 1, . Q; dJ e 1,...-,qi,' Vi €{1,.....,r}
are complex numbers and the associated coefficients

b; (El) =
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aJ(')' J - 11 0 p; YJ 0 I J - r -Ipi;
BJ(I)IJ - 11 o q; 8J(I)IJ = I i Vi E{ll """ rr}
positive real numbers such that the left of the contour. Also

V Z] L ](l) _l_szlyj(l) Z;I 1'3(1) Z] ) j(l) <0 (4)
QI
Z @ z B(l) +z s _ z s +2y(1) 2 ym >0 (5)
j=n+1 j=mj+1 j=nj+1

where the integral n, p, g, m;, n;, pi and q; are constramed by the inequalities p
>n>0,9g20,g=>2m>landp;=>n;>1Viel({l?2,..,r)and the inequalities in
(4) hold for suitably restricted values of the complex variables z, ...., z;. The
sequence of parameters in (1) are such that none of the poles of the integrand
coincide, that is, the poles of the integrand in (1) are simple. The contour L; in the
complex E—plane is of the Mellin-Barnes type which runs from — ®o to
+moo with indentations, if necessary, to ensure that all the poles of " (dj(i)_ Sjm&i),
j=1,.., m;are separated from those of I" (1 — c(')+ yj(')é,i), i=1,...,n.

2. MAIN RESULT:

In this section the parameters (water, carbon-dioxide, sunlight and
chlorophyll) are complete individually. At that condition the Photosynthesis is
represented in multivariable H-function as follows:

1 t+ioo HO, n :(ml,nl+4);.............; (mr,nr)[ |
2mi Jt—ico TP, q:(p1+4.41);. - (Pr.dr)

..........................................................

_ HO n :(mq,ng+4);.. .; (my,np) [ |
p, q: (p1+4q1+1) ............... ; (Pr,dr)

........ (1-a-vy,01+v1),(1—a—8,a1+64),(1— B yB Y1), (1=B=8,B1+81), errrnivnnreeyererrs
! ! ! ,1 (110( ]B Y- 80(1+131+§(1+51) ................... ] +A' (6)

larg(zp)| < EV"”' Vk € [1,...,7], where V, is given in (4).

3. ANALYSIS AND PROOF OF MATHEMATICAL FORMULA:

To prove (6), we put the value of internal and external parameters for
Photosynthesis and for a healthy plant whose surrounding temperature is 6° to
36% a=a+0&, B=PB+B,E, v =y+7,E,8=08+5E (see Tyagi [5] and
Bhatnagar [1]) in the integral of (2) on the both sides and multiplying by

(2m)r[¢ (&) w0 (E)W(E,, ) E)]215 ...z, 5 both sides, and further integrating

in the direction of L., ..., L, with respect to time and after changing the order of
integration on the left hand side, we get the required result (6).
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4. APPLICATION:

In this section, we remove various parameters (water, carbon-dioxide,
sunlight and chlorophyll) in the reaction of Photosynthesis respectively and

represent their position by formula.
1. Photosynthesis in the absence of water:

If we put o; = 0 in the main result then we get following formula:

1 t+i°°H0, n :(ml,nl+3);.............; (mr,nr)[ |
2mi Jt—ico "D, q:(P1+3.91);. - (Pr.9r)

........ (1 B tBl) (1 Y— tyl) (1 65— t81)’:’]r‘(a+t)dt

..........................................................

_ HO n :(mq,nq+4);.. . (mp,ny) [ |
p q: (p1+4q1+1) ............... ; (Pr.Ar)

........ (1 a— YYI) (1 a— 881) (1 B YB1+Y1) (1 B 661+61),',] (7)
TN (1 —o— B Y— 8 Bl+Y1+61) ...................

+ A,
larg(z)| < %an, Vk € [1,...,7], where V, is given in (4).

2. Photosynthesis in the absence of carbon-dioxide:

If we put B, = 0 in the main result then we get following formula:

1 t+ico 0, n :(ml,nl+3);.............; (mr,nr)[ |
2mi Jt—ico TP, q:(P1+3.91) ;. - (Pr.dr)
........ (1 oa— totl) (1 Y— tyl) (1 -6— t51),,]F(B+t)dt
....... - 1
— HO n :(mq,nq+4);...; (mp,ng) [l
p, q:(p1+4, q1+1) FET ¢ o 1 19
........ (1-a—vy,01+v1),(1—a— 5a1+51) (1 B=v,y1),(1—B- 881)] (8)
S (1= 0=B=Y=8,01 +Y1+ 81)t ey rerernas

+A,
larg(z)| < %an, Vk € [1,...,7], where V, is given in (4).

3. Photosynthesis in the absence of sunlight:

If we put y, = 0 in the main result then we get following formula:
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1 ct+ieo HO, n :(myng+3) (mr,nr)[ . |
27 Jt—ico TP, q:(P1+3,d1) ;eeeeeenn (ProAr) :
........ (1 —— tocl) (1 B tBl) (1 &5— t61),,]l—‘(y+t)dt
_ HO n :(mq,ng+4);.. . (mp,np) [ |
p, q:(p1+4, q1+1) ............... ; (Pr.qr)
....... (1 —Q— Y(Xl) (1 —-a—8 (X1+81) (1 B Y, 81) (1 B 8 Bl+81)"] (9)

(1 a— B Y— 8a1+81+61) ...................
+A,

larg(z)| < %an, Vk € [1,...,7], where V, is given in (4).

4. Photosynthesis in the absence of chlorophyll:

1
2mi

If we put 5, = 0 in the main result then we get following formula:

t+ico .0, n :(ml,nl+3);.............;(mr,nr)[ |
t—ico D, q:(P1+3,41); (pr.ar)

..........................................................

— HO n :(mq,ng+4);.. .; (mp,np) [l

p q: (p1+4q1+1) ............... ; (Pr.9r)

...... (1 oa— Ya1+y1) (1 —0— 6(11) (1 BrYBl-I-Yl) (1 B 861), (10)

wo(1=a=B=y=8,a1+ B1+v1):
+A,

larg(z)| < %an, Vk € [1,...,7], where V, is given in (4).

»w
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ABSTRACT

The aim of this paper is to obtain a solution of a simple problem of heat
conduction in a square plate with the help of generalized H—function of two
variables.

1. INTRODUCTION:
The generalized H-function of two variables is given by Shrivastava, H. S.
P. [3] and defined as follows:

M1, N1:My, Ny;M;3, [ X (aj, Qj, Aj)]_, pl:(cjf yj)l, pz:(ej', E])l, p3
P1, d1:P, A7;P3, 0z Y (bj} Bj: Bj)l,ql:(djl 8])1,q2:(fj' Fj)l, a3

== [T 0l ) 0000ty de dn, ()
where o
nq m;
JIT(1 - aj+ &+ Am) IT_ T( b —BiE —Bjn)
J j=1
¢1 (aa n) = ’
P1 a1
IT T (aj—ou& = Am) ITT (1 — bj+ B;E + Bm)
j=n+1 i=1
m, n,
jgl I'( di-8¢) I r (1 —¢+y8)
0, (&) = ’ ;
(o]} P2
MIra-d+88Il I'(g—v8)
j=my+1 j=n+1
ms N3
JLC (f—Fm) T T (1 - e+ Em)
J ji=1
03 (n) = 7
(¢} P3

j=ms+1 j=n3+1 46
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x and y are not equal to zero, and an empty product is interpreted as unity p;, q;,
ni and m; are non negative integers such that pi2n;20,;20,q;2m; 20, (i=1
2,3;j=2,3). Also, all the A’s, a’s, B’s, B’s, Vs, &’s, E’s, and F’s are assumed to the
positive quantities for standardization purpose.

The contour L; is in the &-plane and runs from —iee to + ieo, with loops, if
necessary, to ensure that the poles of I'(d; - §;§) (j = 1, ..., my) lie to the right, and
the polesof I'(1—¢+y€) (j=1, ..., na), ['(1 —aj+ a;&+ Am) (j = 1, ..., n1) to the left
of the contour.

The countor L, is in the n-plane and runs from —ieo to + ieo, with loops, if
necessary, to ensure that the poles of I'(f;— Fm) (j = 1, ..., m3) lie to the right, and
the polesof I'(1 —ej+EM) (j=1, ..., n3), I'(1 —a;+ € + Am) (j = 1, ..., n1) to the
left of the contour.

The generalized H-function of two variables given by (1) is convergent if

U=X12a+ 370 B+ X727 + X146

P1 _ VI . _\P2 qz
j=na+1 & a—— jeng+1Yi — ZjZmy+1 95 (2)

V=211 A+Y 0 B+ Y2 B+ Y5 F

2] n1+1 ] m +lB Z] =ns +1 Z] =m3+1 ]' (3)
where | argx | <% Um, | argy | <% Vm.

In the present investigation we require the following results:
Following modified form of the integral [2, p.372, (1)]:

7 cos . nI'(s)
) (sin x)s_lcosnx dx = , (4)
0 2°T T (s+n+ 1)} T{% (s—n+1)}

Re (s) > 0.
2. INTEGRAL.:

The integral to be established here is
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oA
) On(sinx)s_1 cosnx H [Zl (sme) ] dx
2

2 P1.49upP2+1,92+2;p3,q3

(aj:ajiAj)l,pl:(1_5:1),(Cj:Yj)1'p2:(ej,Ej)l'pg | 5)
1 s, ni
(0}, Bi:BD1a; (d58)), G35 (6F), .

valid under the condition (1).

-2
— nm ,,mq,Nnq;my,ny+1;msz,n Z 2
_2157.[6.05. Hll 2,42 33[1
22

Proof:

Replace the generalized H-function of two variables by its equivalent
contour integral as given in (1), change the order of integration, evaluate the inner
integral with the help of (4) and finally interpret it with (1), to get (5).

3. HEAT CONDUCTION IN A SQUARE PLATE:

In this section, we consider a problem on heat conduction in a square plate
under certain boundary conditions. If a square plate has its faces and its edges x =
0 and x =t (0 <y <m) insulated, its edges y = 0 and y = &t are kept at temperature
zero and f(x) respectively, then its steady temperature u (X, y) is given by [1,
p.125]:

— Q0 < sinhny
uX,y)= f22y+3x a cosnx 6
( y) 21 y n=1 " coshnx ( )

where
an=(2/n)] f(x) cosnxdx,n=0,1,2, .. (7)
0

Now we shall consider the problem of determining u (x, y), where
u (x, 0) = f(x)

= (sinx)S"'H [Zl (SZinx)A] (8)
2

Solution of the Problem:

Combining (8) and (7) and making the use of the integral (5), we derive

2—SCOSn_”Hm1.n1;m2,n2+1im3.n3 ZIZ_/1
2 " P1AuP2t142+2P3ds |z,
(aj:ajFAj)l,pl:(1_5:/1),(Cj:Yj)1'p2:(ej,Ej)l'pg ] ©)
1 s, ni
(3ByBD1Lar: (58, o Gz (G F), o

a, = 2
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Putting the value of a, from (9) in (6), we get the following required
solution of the problem:

nm sinhny

cosnx
2 coshnx

3o N
u(y)= , y+ 227°cos
n=1

% Hml,nl;mz,n2+1;m3,n3 ZlZ_A
P1,d1;P2+1,q2+2;p3,93 Z,

(@j,94;4)1,p4 :(1_5;/1);(Cj;Yj)1jp2 I(ej.Ej)Lp3 | (10)
A
(ijBj;Bj)l,ql :(dj,5]‘)qu,(%—gig,z):(fj,l:j)

provided the condition stated with (5) are satisfied.

1,93

4. SPECIAL SOLUTIONS:

The importance of the generalized H—function of two variables lies largely
from the possibility of expressing by means of the H-symbols a great many of
special functions appearing in applied mathematics, physical sciences and
statistics. So that each of the solutions given in (10) becomes a master or key
solution from which a very large number of solutions can be derived for Meijer’s
G-function, Generalized Hypergeometric function, Bessel, Legendre, Whittaker
functions, their combinations and many other functions.
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ABSTRACT

The decomposition of curvature tensor field was studied by K. Takano[1].
The decomposability of curvature tensor in Finsler manifold was studied by
Pandey[2]. The purpose of the present chapter is to decompose the projective
curvature tensor in recurrent Finsler space and study the properties of conformal
decomposition tensor.

Keywords
Finsler space, projective curvature tensor,recurrent Finsler space.

1. INTRODUCTION:

We considered an n-dimensional Finsler space F, in which the projective
curvature tensor, projective tensor field and deviation tensor field are defined by
Rund[3]

( i P, 20 23" 4
@) Wiien = Hjin + 5y Hijl + 5757 91w

5t A
+_n2f1 (TlHjh + Hh + xrathr) -
5l r A
(11) { nz—fl(nij + ij + xraijT)
. . %
(b) Wi = Hjye + 25 Hijie

5t .
\ +2 {nz[jl (nHy — xTHk]T)}
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(1.2) W = Hj, — H8} — — (3, H] — 0;H)%",
respectively. The following relations will be used in our discussion follow from
(1.1)(a) and (1.2).

a) le}chfcj = Wkih,
(1.3) b) Winx* =Wy,

c) Wixh=o.

The deviation tensor W) is homogeneous of second degree in its
directional arguments. The Projective tensor jik is skew-symmetric in its lower
indices and projectively homogeneous of degree one in their directional
arguments and the projective curvature tensor jl}ch is skew-symmetric in its
indices k and h and is positively homogeneous of degree zero in its directional
arguments.

Sinha and Singh[4] have defined that an F, is called projective recurrent of
the first order if the Berwald’s covariant derivative of the projective curvature
tensor satisfies
(14) ien@ = ViWikns
where V; is a recurrent vector field. The space equipped with such recurrent vector
field and projective curvature tensor is called recurrent Finsler space.

Transvecting (1.4) successively by %/ and x* and therefore using (1.3)(a)
and (1.3)(b), we get
(1.5) Wienay = ViWkn,

(1.6) Wiy = ViWh,

In view of (1.5) and (1.6). We observe that projective deviation tensor W,
and the projective tensor Wy, are recurrent.

The projective curvature tensor satisfied the identity bySinha, Singh and
Tripathi[7]

7)) Wiy  Whiagy + Waijao = 0

Sinha and Singh [5] have also defined that an F, is called projective
recurrent of second order, If the Weyl’s projective curvature tensor satisfies
(1.8) M/jlkh(l)(m) = UlmM/jlkh'
whereU,,,, is a recurrence tensor. Transvecting (1.8) successively by x/and x*, we
get
(1.9 Werwym = UmWin,
and
(1.10) Wii(l)(m) = Upn Wh.

Accordingly, we can state that projective deviation tensor and projective
tensor satisfies the second order recurrent condition, if so is Weyl’s curvature
tensor.
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The recurrent curvature tensor Hjikhsatisfies the relation Sinha and
Singh[6]:Type equation here.
(1.11) Hjinwy = AdHjgn '
whereV;is recurrence vector.Transvecting (1.11) successively by %/ and x* and,

we get

(1.12) Hinay = AiHin
and
(1.13) Hhay = AHp,

The curvature tensor field of second order satisfies the relations Sinha and
Singh[6]:
(1.14) Hjinyemy = KimHjkn
where Ki, = Ay + Ay IS the recurrence tensor. Transvecting successively by
xJand x*, we have

(1.15) Hinayom) = KimHins
and
(1.16) Hpyamy = KimHp,

2. DECOMPOSITION OF PROJECTIVE CURVATURE TENSOR IN RECURRENT
FINSLER SPACE (WR — F,):

Let us consider the projective curvature tensor Wﬁ(h in the form
(2.1) j?ch = leBkhf
Whereinis non zero tensor and By,is skewsymetric decomposition tensor.

The space equipped with such decomposition of projective curvature
tensor with recurrent Finsler space is called decomposition of projective
curvature tensor in recurrent Finsler space and we denote it by WR — E,.

Differentiating (2.1) covariantly with respect to x! in the sense of
Berwald’s, we get

(2.2) Winay = Y]i(l)Bkh + By,
Using the equation (2.1) in (2.2), we get
(2.3) Wiknay = BilY/Bin + BrnnyY):
where
(2.4) Yio = BY)
From equation (2.1) and equation (2.3), we get
(2.5) Binay = (Vi — B Bn.

Let us assume that (V; # B;) then the equation (2.5) may be written as
(2.6)  Brn = ViBkn
wherey, = (V; — B .
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Conversely, If the above equation (2.6) is true then (2.3) yield

(2.7) ViBin = (B1+ v)Bin
Accordingly, we have the

Theorem 2.1:In WR — E,, the necessary and sufficient condition for the
decomposition tensorB;, to be recurrent is that the recurrent vector V; is not
equal to recurrent vector g;.

Let us assume that the vector V; is equal to recurrent vector f; such that

(2.8) Vi=5
In view of equation (2.8), equation (2.5) immediately reduces to
(2.9) Binay = 0.

Using equation (2.9) in (2.3), we have
(210)  Winawy = YjayBrn

or Wi = BiY/Bin
Adding the expressions obtained by cyclic change of (2.10) with respect to
the indices k, hand [, we have
2.11) Wienay + Winiaey + Wik '
=Y/ (BiBkn + BiBri + BrBu)-
In view of (1.7) equation (2.11) reduces to
(2.13) Y}l(ﬁlBkh + BiBn + BrnBu) = 0.
Since Y;" is non zero tensor, it implies
(2.13) BiBin + BB + BrnBuy. = 0
or VlBkh + Vthl + VhBlk = 0
Accordingly state:

Theorem 2.2: In WR — E,, under the decomposition (2.1), if the vector V; is
equal to f5;,the decomposition tensor satisfies the following identity (2.13).

Differentiating (2.10) covariantly with respect to x™ in the sense of
Berwald’s and using (2.9), we get
(2.14) Wiy = Bum)Y) Ben + BiYjm) Bin

In view of (2.4) the above equation may be written as
(2.15) ien@yem) = (Bum) + BiBm)Y) Bren

Using equation (1.101) and (2.1), we get '
(2.16) UimY) Brn = (Bim) + BiBm)Y) Bin,

From (2.16), we have
(2-17) Um = (.Bl(m) + Bifm)

Thus we conclude that
Theorem 2.3 In WR — E,, under the decomposition (2.1), if the vector V; is equal
to B, for which recurrence vector field g, satisfies the condition Sy + Bifm #
0.
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Interchanging the indices [ and m in (2.15) and subtracting the equation
thus obtained to (_2.15), we have

(2.18) Wieh@ym) — M/jllch(m)(l)
= (Upn — Un))Y) BgnBin.-
or
_ stch(l)(m) - M/jlkh(m)(l) = (ﬁl(m) - ﬁm(l))YJlBkh'
Accordingly we state:

Corollary 2.1: In WR — F,, Under the decomposition (2.1) if the vector V; is
equal to S;, the projective curvature tensor satisfies the following identity (2.18).

Differentiating (2.6) covariantly with respect to x™ in the sense of
Berwald’s, we get

(2.19) Brn@wy(m) = Yien)Brn + ViBknm)
= (Vl(m) - ﬁl(m))Bkh + (Vi = B Brnm
In view of (2.6), the equation (2.19) may be written as
(2.20) Brniyemy = (Viem) — Buamy) Bkn + Y (Vi — B) Bin
or
(2.21) Binwamy = Vigmy = Bigm))Bien + Vi = Bm) Vi — B) Bk
(2.22) Brnwyam) = Vign) = Biem) + ViVt — ViBi — ViBm+B18m) Bin

Theorem 2.4:In WR — F,, Under the decomposition (2.1), the second order
covariant derivative of decomposition tensor By, satisfies the relation (2.22).

In view of equation (2.8), equation (2.22) immediately reduces to

(2.23) Brnwyam =0

Corollary 2.2: WR — E,, the second order covariant derivative of decomposition
tensor By, vanish, If the vector V; is equal to S;.
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ABSTRACT

This paper defines a new technique of optimization of usable residue in
One Dimensional Cutting Stock Problem by introducing a method for having
minimum leftover to be used as non-standard stock (NSS). The concept behind
the usable leftover is very critical in real time application, since the leftover stock
to be maintained is difficult. We propose a method that focuses on to leave
minimum usable residue, which takes care of warehousing problem up to some
extent. Moreover, it has been noticed that the trim loss in some cases is reduced.

Keywords: minimum usable residue, cutting stock problem, leftover stock.
AMS Subject Classification: 90C90; 90C27, 90C10

1. INTRODUCTION:

Cutting Stock Problem (CSP) is a problem thatdeals with operations on
stock utilization(cf.[2],[5]). It is a problem that deals with cutting large pieces
available in inventory into a set of smaller pieces in order to satisfy the demands.
These problems are relevant in the planning of utilization of materials in
industries like iron, steel bar factories, glass industries etc., to avoid large amount
of waste and minimize the total number of stock length cut and also minimize the
cost incurred.

Various methods are developed to solve CSP which are based on pattern-
oriented (cf.[8],[15]), item-oriented (cf.[10]) or mixed approach (cf.[12]) and also
methods are introduced by Cherri [4] (see also[3])to present optimal solution
which are applicable to small size problems.

Further, there are articles in the literature which shows the reuse of
leftover material in the form of pieces(cf.[7],[9]). The two popular methods
COLA (cf.[11]) and CUT (cf.[10]) deal with such type of situations in which
there is a provision of reuse of leftover material. Also later Abuabara[1] modified
the model proposed by Gradisar [10](see also[11]) with minimum number of
constraints and variables in the model.
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In this paper, we propose an efficient resolution to the Cutting Stock
Problem in which a heuristic method is developed that defines Cutting Stock
Problem with minimum Usable Residue (CSPMUR). Reconsideration on the
conventional heuristic method, the CSPMUR characterize minimum residue
which can be discarded and it will not affect the trim loss. In order to handle
smaller inventory, we have imposed a condition on our mathematical model such
that the residue under consideration should be minimum i.e. within the lower and
higher order length. Therefore CSPMUR deals to leave minimum residue which is
manageable.

This approach is an extended version of Gradisar’s concept on minimum
trim loss with usable leftover. This process is feasible when order lengths are
small with proportion to stock length such that the sum of the length of all the
orders should not exceed the stock length. This can be made relevant for the
application to Coronary Stent where large piece of stent have to be cut into small
pieces according to the requirement of the Patient. But this concept is not feasible
in the case of transmission tower industry where the ratio of stock length(varies
from 7m to 14m) to order length is low or medium.

The authors have worked out with the data extracted from[6] and compared with
the existing methods and have obtained better results.

2. DEFINITION OF THE CUTTINGSTOCK PROBLEM WITH
MINIMUMUSABLE RESIDUE:

In the CSP the scrap is unavoidable which is usually discarded but the
question arises if the scrap is big enough(non-standard stock), which cannot be
left as useless and if not taken into consideration the consequence is it will affect
the functioning of the industry i.e. company will run in loss. Sustenance of then
on-standard stock is an extra overhead, since the warehousing is difficult, as it
requires space, manpower and maintenance of leftover database. Therefore, we
intend to the elucidation of CSP as to minimize the usable scrap and this can be
attained by designing the cutting plans in such a way that scraps are minimum that
can be ignored or should be larger than the longest order length to go back to the
standard stock.

The objective function of conventional CSP is to minimize the waste after
cutting the order length from the stock thereby minimizing the waste cost. In this
paper, we define the objective function of CSPMUR as to reduce the number of
functional (utilizable) pieces left after the order lengths had been cut from the
stock length since it is difficult to manage the inventory of these pieces (left over).
In accordance with our assertion, we discuss the following illustrative example.
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Example 2.1

a) Total Stock lengths b). Order lengths with demands
Solution

Cutting pattern (a) Cutting pattern (b)

Cutting pattern(c) Cutting pattern (d)

Fig. 2

The stock lengths, order lengths and demands are given in Fig. 1. Various
cutting patterns are possible which are represented in Fig.2. Out of options from
Fig.2(a-d), Fig.2-d is better when compared with Fig.2(a-c),since it leaves
minimum usable residue. According to CSPMUR, the best possible pattern is
Fig.2-d, which leaves no trim loss and the residue is large enough which can be
merged with the standard stock.

The solutionFig.2a has 3m as usable scrap which is not manageable;
similarly usable scrap is also left in solution Fig. 2b and Fig. 2c. Usable scrap is
an overhead to the industry, the minimum usable residue canbe obtained by
focusing on the fact that while cutting plans are determined it should not be
focused on a single order length of demand to be cut in multiple number from a
single stock rather concentrate the cutting plan of different order length from a
single stock to be cut so that scrap can be reduced with minimum usable residue.
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3. NEW METHOD CSP WITH MINIMUM USABLE RESIDUE
INITIATED BASED ON EXISTING METHOD:

These methods are based on the existing objective function i.e. minimizing
the trim loss with usable leftover.

e First Fit Decreasing Algorithm due to Cherri et.al[6]:

According to this algorithm the largest stock is initiated to cut the order

length until its demand is attained, when it is exhausted, then the next

order length is cut from the following second largest stock until the
smallest order length is reached.
e A Generic Greedy Algorithm due to Sin-Min Lee [14]:

Many real-world problems are optimization problems in that they attempt
to find an optimal solution among many possible proposed solutions.

(1) Initialize C to be the set of proposed solutions

(2) Initialize a set S = the empty set & (the set is to be the optimal solution

we are constructing).

(3) While C=& and S is (still) not a solution do

(3.1) select x from set C using a greedy strategy
(3.2) delete x from C
(3.3) if {x} US is a feasible solution, then
S= SuU{x} (i.e.,add x to set S)
(4) if Sisasolution then
Return S

(5)else return failure

In general, a greedy algorithm is efficient because it makes a sequence of
(local) decisions and never backtracks. However, the solution is not always
optimal.

These methods as given in the literature aim to minimize the trim loss with
no consideration to manage the unavoidable large enough scrap, if discarded will
certainly concern the performance of the industry.

In this present paper, authors developed a method of minimizing the non-
standard stock(NSS), since it will an overhead for maintaining the data store.

4. ANEW APPROACH:

For our cutting plan, we refer the following basic assumptions considered
by Dychoff (see [13]) which is basically assortment of large objects.
Its individualities are
1. One large object
2. Many identical large objects
3. Different large objects

59



INSPIRE ISSN: 2455-6742
Vol 01, May 2016 No. 02 56 -65

Besides the above conditions Gradisar in his paper [13] has considered the
generalized condition on the available stock length viz. few groups of identical
large objects. In view of above considerations, we are now in a position to design
our cutting plan which has been described as follows:

Order lengths are arranged in descending order with respect to their
lengths. The stock length are considered as GIDCSP or SIDCSP where,

i = order length, i=1,2,..,n.

d;i = required number of pieces of order length I;

U or U; = Stock Length, j=1,2,...,p.
where p is the number of diverse standard stock length (cf.[16])in a adequately
big stock.

Choose the appropriate stock length U; so that at least one piece of each
order length should be cut from U;.
pij = number of pieces of order length is been cut from stock length U;

e lipij < U (4.1)
where p;; =1

Referring equation (4.1) we defined; as follows
Step 1.

8 =Uj—Xisilipiy 5 forpij=1j=1,..,p (4.2)

The residue left from each stock length should be manageable NSS or
non-manageable NSS or minimum NSS which can be discarded for which the
objective function is

min Y¥_, §; (4.3)

(minimizing the usable residue)
subject to

w1 li < U; (4.4)
We assume p;; = 1 (4.1)

?=1pij = di ; i = 1, e, _] = 1, e, P (45)
We check the following:
Step 2

i.  If §; <y, then §; is scrap which shall not be reused
i, If§; = [y, then we shift it to the stock (NSS) which is reusable for further
processing.
If (i) holds, then we take up another stock length and proceed as in case of step 1.
If (ii) holds, then we define
J={1,2,....,n}
§=8-Xigl py=1 (4.6)
where J(Index set).
We choose the order lengths [;s in (4.6) in such a way that 6j1 > Oie.,we
may not consider some of the order lengths in . ¢, [;.
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Again, we examine 6]-1 as in step 2. We continue the process by defining

oMl & < ly,i=1,..,n
Algorithm:
Step 1: read [;, d; and U;

Step 2: arrange [; and U; in descending order.

Step3:6;-U;— X;
If(6; < min) && (6; = 0)
min = §;
sty = U;

Step 4: Repeat step 3 for U; < U,

Step5pU=1 Vi=I,

j++

L+ +
Step 6: repeat step5; < [,
Step 7: if (Xiz1 pij) = d;

di - O

pij + + fOT li

if alld; =0 then
stop

else
goto step 3.

)

5. COMPARATIVE STUDY OF THE NEW APPROACH WITH FFD

AND GENERIC GREEDY ALGORITHM:

In order to compare explicitly our method with FFD and Greedy, we

consider the same dataas analyzedby Gradisar(cf.[6]) in this section .

We now consider the following table of data extracted from [6] with stock

length assumed as 3000 cm.

Item

Length(cm)

Demand

1

250

2

275

285

525

bW

1380

2
4
4
4

Table 1
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First fit Decreasing (FFD)

In FFD the order lengths and the stock lengths are arranged in a
descending order. The order lengths are cut from the stock in multiple factors to
satisfy the demand. The longest stock is initiated to cut to satisfy the largest order
length, until the demand is exhausted. Then the next order length is cut from the
following largest stock until we reach the smallest order.

Generic Greedy

The various cut patterns are proposed by cutting the order lengths by
various stock length out of which the optimal pattern is chosen to solve the
1DCSP.

Our approach

It deals with the fact that the at least one order length is cut from the stock
since the sum of the order length is less than the stock and this process is
continued till the scrap left can be discarded.

Comparative analysis

The above methods are applied on data of Table 1 and found that the trim
loss computed by the new approach is very less as compared to other two
algorithms. Also the scrap left between the smallest order length and the largest
order length is almost nil which is the objective of the new approach ie. resolving
the problem of maintaining the data warehouse (Table 2).

Constructive
FFD Greedy New approach
Object cut 4 4 4
Total Length 12000 12000 12000
Total Loss 525 240 4
Total NSS 1669 1954 2190
Avoidable Scrap 0 0 0
Manageable NSS 3 1 2
Unmanageable 1 1 0
NSS
Table 2

It has been tested in few problems corresponding to randomly generated

data and result was found satisfactory. The above algorithm was computerized in
C language to calculate the minimum usable residue of which the screen shots are
as below.
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Screen shot
B DOSBox 0.74, Cpu speed: max 100% cycles, Frameskip 0, Program:  TC =

Stock Length:3000
GIVEN ORDER
Length(m) Demand

Screen Shot 1. Entering the value of order length, demand and the stock

Ed DOSBox 0.74, Cpu speed: max 100% cycles, Frameskip 0, Program: TC =

Stock Length:3000
GIVEN ORDER
Length(m) Demand

fiddition of all demand lengths:2715
Leftover from 1 piece of 3000:285
flvoidable Scrap:0_

Screen Shot 2. Sum of the order length and leftover after cut pattern

Ea DOSBox 0.74, Cpu speed: max 100% cycles, Frameskip 0, Program: TC -

[Stock Length:3000
GIVEN ORDER
[LengthC(m) Demand

Avoidable Scrap:@
Avoidable Residue:4

Addition of Demands:1905
nagable Residue is:Z2190
otal Stock Used:4 pieces of 3000_

Screen Shot 3: Utilization of the stock to satisfy the demand
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B DOSBox0.74, Cpu speed: max 100% cycles, Frameskip 0, Program; TC - ':'

omputational analysiz result
0b ject Cut:4

otal Length:12000

otal Loss:@

otal Retail:2190

Avoidable Scrap:0
iHanageable Retail:2
nmanageable Retail:@

Screen Shot 4: Computational Analysis Result

Conclusion:

This work characterizes a different technique to resolve the 1D-CSP in
some cases, which directs to a better possible resolution with low time
complexity. The proposed method is suitable when the ratio of size of stock to
order length is sufficiently large. It focuses on the cutting plan that the order
lengths are cut from stock in such a way that the usable residue left is minimum.

In this approach we have assumed to cut all the order lengths from the
stock which may be observed very rare practically, but the future aspect of
research can be to cut few order lengths from the stock to reduce the operating
cost which will be more feasible from implicational point of view.
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ABSTRACT

This paper demonstrates that the space of piecewise smooth functions can
be well approximated by the space of functions defined by a set of simple (non-
linear) operations on smooth uniform splines. The examples include bivariate
functions with jump discontinuities or normal discontinuities across curves, and
even across more involved geometries such as a 3-corner. The given data may be
uniform or non-uniform, and noisy, and the approximation procedure involves
non-linear least-squares minimization. Also included is a basic approximation
theorem for functions with jump discontinuity across a smooth curve.

1. INTRODUCTION:

High-quality approximations of piecewise-smooth functions from a
discrete set of function values is a challenging problem with applications in image
processing and geometric modeling. The univariate problem has been studied by
several research groups, and satisfactory solutions can be found in the works of:
Harten [6], Arandifa et al.[1], Archibald et al.[2, 3], Lipman et al.[9]. However,
the 2D problem is still far from being solved, and the 1D methods are not easily
adapted to the real 2D case. Furthermore, even the 1D problem is not easily
solved in presence of noisy data. In the 1D problem we are given values of a
piecewise smooth function, with or without noise, and the challenge is to
approximate the location of the ’singular points’ which separate one smooth part
of the function from the other, and to also reconstruct the smooth parts. In the 2D
case a piecewise smooth function on a domain D is defined by a partition of the
domain into segments separates by boundary curves (smooth or non-smooth), and
the function is smooth in the interior of each segment. By the term smooth we
mean that the derivatives (up to a certain order) of the function are bounded. Of
coarse, the function and/or its derivatives may be discontinuous across a boundary
curve between segments. Given data acquired from such an underlying piecewise
smooth function, the challenge here is to approximate the separating curves (the
singularity curves), and to reconstruct the smooth parts. Note that apart from noise
in the function values, there may also be a *noise’ in the location of the separating
curves (as demonstrated in Section 3.2).
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The problem of approximating piecewise-smooth functions is a model
problem for image processing algorithms, and some sophisticated classes of
wavelets and frames have been designed to approximate such functions. For
example, see Candes and Donoho [5]. A method for approximation piecewise
smooth functions would also be useful for the reconstruction of surfaces in CAGD
or in 3D computer graphics, e.g., via the moving least-squares framework.

It is well established now that only non-linear methods may achieve
optimal approximation results in ‘non-smooth’ spaces, ¢.g., see Binev et al.[12].
In this paper we are going back to using the *good old’ splines with uniform knots
as our basis functions for the approximation, but we add to the game some
(simple) non-linear operations on the space of splines. In fact, all the non-linearity
used here can be expressed by the sign operation. We remark that the choice of
the spline basis is not essential here, and other basis functions may be utilized
within the same framework.

We present the idea and the proposed approximation algorithms through a
series of illustrative examples. Building from derivative discontinuity in the
univariate case, we move into normal discontinuity and jump discontinuity across
curves in the bivariate case, with some non-trivial topologies of the singularity
curves. We shall also present a basic approximation result for the case of jump
discontinuity across a smooth curve. Altogether, we present a simple, yet
powerful approach to piecewise smooth approximation. The suggested method
seems to be quite robust to noisy data, and even the univariate version is
interesting in this respect. Open issues, as the development of efficient algorithms
and further approximation analysis are left for future research.

2. NON-SMOOTH UNIVARIATE APPROXIMATIONS:

To demonstrate the main idea, we start with the univariate problem: Assume we know
that our underlying univariate function f is continuous, f € C[a, b], and that it has one point
of discontinuity in its first derivative in s € [a,b], and that f'(s~) > f'(s*). Then it makes

sense to look for two smooth functions g/ and !, where g!* approximates f on the left

segment [a, 5], and g approximates f on the right segment [s,b], and such that
(2.1) flx) = min I.“L’lr.ll_’.r;:.gk- (x)),¥x € [a,b].

2"l may be viewed as a smooth extension of f|, , to the whole interval [a,b]. and ¢!l as a
smooth extension of | ; to la, b]. It is clear that there are many pairs of smooth functions
2"l and g'! which satisfy the above relation. Therefore, one may suspect that the problem
of finding such a pair is ill-conditioned. Let us check this by trying a specific algorithm for
solving this problem, and check it on few examples. It becomes clear from these examples
that the approximations by gl and g/ are well defined in the relevant intervals, ie.. g in
(s.b] and ¢!l in [a,s). To approximate the functions g and g’ we use cubic spline basis
functions, with equidistant knots t; =a+ (j—1)8,j=1,....,k,6 = (b—a) k.
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Assuming we sz: given data { JfJ'|:.'r,-::I|.‘r,- E“X Cf[a,é:l] }.owe lﬁdk for;3|r- and 2!l such that
(2.2) Fi(p)= Y [f(x)- min( gl (x;). ¢! (x;))]* — minimun.

.KI'EX
Here p stands for the set of parameters used in the representation of the unknown functions
gl and glfl. We use the convenient representation

k k
(2.3) elx) =Y «Bj(x), ¢l(x) =Y B;Bj(x).
J=1 j=1

1B j}f , are, for example, the basis functions for cubic spline interpolant with the not-a-
knot end conditions, satisfying B;(7;}) = &; ;. Hence, in (2.2) p stands for the unknown
splines’ coefficients, p = {aj}f |U{ﬁj}§ |-

In Figure 1 and in Figure 2 we see the results of reconstructing piecewise smooth
functions from exact data and from noisy data. In both cases X = {—3:0.02: 3} and
{tj} ={—3:1.5:3}. The solution of the optimization problem (2.2) is depicted in a bold
line. The underlying function f is generated as f(x) = min( f*(x), f"(x)). and the graphs
of these two generating functions are depicted by dashed lines. The fine continuous lines
in the figures represent the functions g and gl’l, which, as we see in those graphs, ap-
proximate fI” and ! accordingly, and the approximation is good only in the appropriate
regions. Here & = 5, and thus we have 10 unknown parameters to solve for. The optimiza-
tion has been performed using a differential evolution procedure, using the data values at
the points {7;} as the starting points of the iterations for both {ct; } and {B;}.

Remark 2.1. An alternative representation of f in (2.1) is

24) f(x) =) — (e"(x) — g(x)) 4, x €[a,b],
where

2.5) {rfj{:{:] ;:?}:?} :

Hence, we can replace the cost functional (2.2) by

(2.6) F(p)= ZX [f (xi) — (g1 (x:) — (g2(x:)) )] -

Here p stands for the set of parameters in the representation of the unknown spline func-
tions g1 and gz, with the advantage that here only one unknown spline function, gz, in-
fluences the functional in a non-linear manner. We shall further discuss such semi-linear
cases in the bivanate case.

2.1. The case f'(s”) < f'(s*) and more. Obviously, in this case we should replace the
min operation within (2.2) by a max operation. In case we have two break points s; and
syin [a,b), e.g. with f'(s;) < f'(s)) and f'(s3) > f'(s; ), then we may look for three
unknown spline functions, gy, g;. £3, such that min(g,max(g;,23)) approximates the data
in the least-squares sense, and so on. To avoid high complexity we suggest to subdivide
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la, b] into intervals, partially overlapping, each containing at most one break point, and to
blend the individual local approximations into a global one over a,b]. We shall further
discuss and demonstrate this strategy n the 2D case.

The problem of approximating piecewise smooth univariate data has been investigated
by many authors. A prominent approach to the problem is the so-called essentially non-
oscillatory (ENO) and subcell resolution (SR) schemes introduced by Harten [6]. The ENO
scheme constructs a plecewise-polynomial interpolant on a uniform grid which, loosely
speaking, uses the smoothest consecutive data points in the vicinity of each data cell. The
SR technique approximate the singularity location by intersecting two polynomials each
from another side of the suspected singularity cell. In the spirit of ENO-SR many inter-
esting works have been written using this simple but powerful idea. Recently, Arandifa
et al.|1] gave a ngorous treatment to a variation of the technique, proving the expected ap-
proximation power on piecewise-smooth data. Archibald er al |2, 3] have further improved
the ENO idea by introducing polynomial annihilation techniques for locating the cell which
contains the singularity. A recent paper by Lipman er al [9] is using quasi-interpolation op-
erators for this problem. Yet, the extension of the univariate methods to the 2D case is not
obvious and is not simple. In [1], after locating a interval of possible singularity using ENO
[6], two polynomial approximations are defined, each one approximating the data on one
side of the sinularity, and their intersection is used to approximate the sinularity location.
The method suggested here 1s similar, since we also look for two different approximations
related to the two sides of a singulanty. However, the least-squares optimization approach
enables natural extension to interesting cases in the bivariate case. The singularity localiza-
tion is integrated within the approximation procedure, and thus it is less sensitive to noise.
In the next section we hope to convince that the simple idea represented in Section 2 is has
the potential of solving some non-trivial bivariate approximation problems.

45

Za -2 -1 i 1 2 3

FIGURE 1. A univariate example - No noise
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3. NON-SMOOTH BIVARIATE APPROXIMATIONS:

As demonstrated in the 1D case, the non-linear space of functions defined
by uniform splines, together with the simple operations min and max, may be
used to approximated univariate piecewise smooth continuous functions. In the
bivariate case we consider functions with derivative discontinuities or jump
discontinuities across curves. The objectives of this section are fourfold:

(1) To exhibit a range of piecewise smooth bivariate functions which can be
represented by simple non-linear operations (as min and max) on smooth
functions.

(2) To suggest some non-linear least-squares approximation procedures for the
approximation of piecewise smooth bivariate functions.

(3) To present interesting examples of approximating piecewise smooth bivariate
functions, given noisy data.

(4) To provide a basic approximation result.

: 1 1 1 1 1
3 2 1 o 1 F a

FIGURE 2. A univariate example - Reconstruction in presence of noise

3.1. Normals™ Discontinuity across curves - Problem A. We start with a numerical
demonstration of a direct extension of the univariate approach to the approximation of
continuous piecewise smooth bivariate functions. Recalling the 1D discussion, the choice
of a min or a max operation depends on the sign of f'(s% ) — f'(s7 ). In the 2D case we refer
to an analogous condition involving the slopes of the graph along the singularity curves.
A discontinuity (singularity) of the normals of a bivariate function f is said to be convex
along a curve ¥ if the exterior angle of the graph of f at every point along the curve is < I1T
(e.g., see Figure 6), and it is considered to be concave 1f the exterior angles are >T1. Ina
neighborhood of a concave singularity (discontinuity) curve the function may be described
as the minimum between two (or more) smooth functions, and near a convex singularity
curve the function may be defined as the maximum of two or more smooth functions. Let
us consider the following noisy data, {f(x;)}v,cx, taken from a function with convex sin-
gularities. For the numerical experiment we took X as the set of data points on a square
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grid of mesh size h = 0.125 in D = [-2,2] x [-2,5], and the given noisy data is shown
in Figure 3. In this case the function has a "3-comer’ type singularity, where f has con-
vex singularity along three curves meeting at a point. Therefore, we look for three spline
functions, g1, g2, g3 so that

(3.1) f(x) = max(g1(x),82(x), 83(x)),

where g, 25, 25 solve the non-linear least-squares problem:

(3.2) Fa(p) = Y. [f(xi) —max(gi (x;). g2(x;). 83(x:))]* — minimun.
xeX

Within this example we would also like to show how to blend two non-smooth approx-
imations. Therefore. we consider the approximation problem on two partially overlapping
sub-domains of D, Dy = [-2,2] x [-2,2] C Dand D7 = [-2,2] % [1,5] C D. Afier solving
the approximation problem separately on each sub-domain, the two approximations will be
blended into a global one. On each sub-domain the unknown functions {g;}7 | are chosen
to be cubic spline functions with a square grid of knots of grid size 6 = 2. Here again
the triplet of functions g. g5. g1 which solve the minimization problem (3.2) is not unique.
However, it turns out that the approximation to f is well defined by (3.2). Le., the parts of
{g:}3_, which are relevant to max(g|, g2, g3) are well defined.

Let us first consider the approximation on the sub-domain Dy = [-2,2] x [-2,2] C D.
For the particular data shown on the left plot in Figure 4, the solution of (3.2) yields the
plecewise smooth approximation depicted on the right plot. In this plot we see the full
graphs of the three functions { g,-}? ; (for this sub-domain), while the approximation is
only the upper part (the maximal values) of these graphs. The solution of the optimiza-
tion problem (3.2) has been found using a differential evolution procedure [7]. As an
initial guess for the three unknown functions we took, as in the univariate case, the spline
function which approximates the data over the whole domain D). Next, we look for the
approximation on 7 = [-2,2] x [1,5] € D, which partially overlaps ;. The relevant data
and the resulting approximation are shown in Figure 5.

In order to achieve an approximation over the whole domain D = [-2,2] % [-2.5], we
now explain how to blend the two approximations defined on D) and on D». The singular-
ity curves of the two approximations do not necessarily overlap on 0y N [,. Therefore, a
direct blending of the two approximations will not provide a smooth transition of the sin-
gularity curve. The appropriate blending should be done between the corresponding spline
functions generating these singularity curves. On each sub-domain the approximation is
defined by another triplet of splines { g;}? ;- For the approximation over D; only two of
the splines are active in the final mav operation, and the graph of the third spline 1s below
the maximum of the other two. To prepare for the blending step we have to match appro-
priate pairs of both triplets, and this can easily be done by proximity over the blending zone
Dy N Dy. The final approximation over D is defined by max(§;, g, ;). where {jg‘r:-}f | are
defined by blending the appropriate pairs, using the simplest C! blending function. The re-
sulting blended approximation over D, to the data given in Figure 3, 1s displayed in Figure

6.
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FIGURE 3. The noisy data over [[12;2]x[[1[12;5]

3.2, Jump Discontinuity across a curve - Problem B. Another interesting problem in
bivariate approximation is the approximation of a function with a discontinuity across a
curve. Consider the case of a function defined over a domain [, with a discontinuity
across a (simple) curve ¥, separating D into two sub-domains D, and D_. We assume
that f|p, and f|p_ are smooth on D} and D_ respectively. Such problems, and especially

]
- ¥ ey 1

FIGURE 4. The noisy data and the 3-corner approximation over D;

the problem of approximating ¥, appear in image segmentation. Efficient algorithms for
constructing ¥, which are useful even for more involved data, are the method of snakes,
or active contours, and the level-set method. The method of snakes, introduced in [8], 1t-
eratively finds contours that approach the contour ¥ separating two distinctive regions in
an image, with applications to shape modelling [10]. The level-set method, first suggested
in [11], 1s also an iterative method for approximating ¥, using a variational formulation
for minimizing appropriate energy functionals. Recently a varnational spline level-set ap-
proach has been suggested in [4]. Here, the focus is on simultaneously approximating the
curve ¥ and the function on D, and [D_. This goal is reflected in the cost functional used
below, and, as demonstrated in Section 3.3, we can also handle non-simple topologies of 7,
such as a 3-comer. The following procedure for treating a jump singularity comes as a nat-
ural extension of the framework for approximating a continuous function with derivative
discontinuity, as suggested in Section 3.2:
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Again, we look for three spline functions, g,, g, and g_, such that the zero level set ¥ of
2y approximates the singularity curve ¥, g, approximates f on ), . and g_ approximates
f on D_. Formally, we would like to minimize the following objective function:

(3.3) Fe(p)= Y, [flxi)—g; (x> + Y [flx)—g- (x:)]* — minimun.
Bylx:)=0 gylxg)=l

Note that the non-linearity of the minimization problem here, which we denote Problem
B. is due to the non-linear operation of sign checking. This approximation problem may
seem to be more complicated than Problem A of the previous section, but actually it is

FIGURE 5. The noisy data and the approximation over D,

somewhat simpler. While in problem A the unknown coefficients of all the three splines
appear in a non-linear form in the objective function Fy (due to the max operation). here
only the coefficients of g, influence the value of F in a non-linear manner. This is due
to the observation that once g, is known, the functions g, and g_ which minimize Fy are
defined via a linear system of equations. In view of this observation, and for reasons which
will be clarified below, we use a slight variation of the optimization problem. Namely, we
look for a function g, which minimizes Fy, where g, and g_ are defined by the (linear)
least-squares problem:

(3.4) Fe(p)= Y [fx)—g. )P+ Y [F(xi) — 2 (x;)]* — minimun,

.YIEX{' .r,-EX"
where ¥ denotes the zero level set of gy. /i is the "mesh size’ in the data set X, and

X" ={x; | gy(x;) > 0, dist (x;,¥) > h} .

X" = {xi | gylxi) <0, dist(x;,7) > h} .

For non-noisy data we would like to achieve an O(h*) approximation order to f| Dy
and f|p_. on D, and D_ respectively. This can be obtained by using proper boundary
conditions in the computation of g, and g_, e.g.. by extending the data by local polynomial
approximations. We thus consider a third version of the least-squares problem for g, and

g :
(3.5 Fy(p) = E[j{ (x;) — g4 (x)]* + Z[j_ (x;) — 2_(x;)]* — minimun.
Xk Xk

73



INSPIRE ISSN: 2455-6742
Vol. 01, May 2016 No. 02 66 - 80

FIGURE 6. The blended approximation over [[12;2]x[[1(2;5]

In(3.5) X" =X\ X" and X* =X\ X", f, (x;) is the given data f(x;) on X" and the exten-
sion of this data into X" \ X", and f_(x;) is the given data f(x;) on X" and the extension
of this data on X* \ X". The extension operator should be exact for cubic polynomials.

Remark 3.1. Since gy may be defined up to a multiplying factor, we may restrict its un-
known coefficients to lie in a compact bounded box, and thus the existence of a global
minimizer in (3.3)-(3.5) is ensured.

Let us now describe a numerical experiment based upon the above framework. The
function we would like to approximate is defined on D = [—3,3]%, and it has a jump dis-
continuity across a sinusoidal shaped curve. We may consider two types of noisy data; The
first includes noise in the data values, and the second includes noise in the location of the
singularity curve ¥. The three unknown functions gy. g, g_ are again cubic spline func-
tions with a square grid of knots of grid size § = 2. However, the unknown parameters p in
Fj are just the coefficients of g,. The other two spline functions are computed within the
evaluation procedure of Fg by solving the linear system of equations for their coefficients,
Le., the system defined by the least-squares problem (3.4). The noisy data of the second
type (noise in the location of ¥), and the resulting approximation obtained by minimizing
(3.3), are displayed in Figures 7 and 8.

For a function with a more involved shape of singularity curve we would suggest to sub-
divide the domain into patches, partially overlapping, and then blend the approximations
over the individual patches into a global approximation. As in the blending suggested for
Problem A. the blending of two approximations to jump discontinuities over partially over-
lapping patches D and [); should be performed on the functions gy. g, g_ which generate
the approximations on the different patches. Here one should take care of the fact that the
function g, is no uniquely defined by the optimization problem (3.3). Let us denote by g,
and gy 2 the functions generating the singularity curve on D and D; respectively. In order
to achieve a nice blending of the two curves we suggest to scale one of the two functions,
say gy.1. 50 that & - gy | = gy2 on Dy MD5. In fact, it 1s important to match the two functions
only on that part of [J} M D); which is close to the zero curves defined by g, | and g5.
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3.3 Problem B - Approximation Analysis. The approximation problem is as follows:
Consider a piecewise smooth function f defined over a domain D, with a discontinuity
across a simple, smooth curve ¥, separating I into two open sub-domains I, and D_. We
assume that f|p, and f|p_ are smooth, with bounded derivatives of order four on D, and
D_ respectively, and so is the curve ¥. Let X < D be a gnd of data points of grid size h,
and let us consider the approximations for Problem B using bi-cubic spline functions with
knots on a gnid of size § = mh (m = 3). The classical result on approximation by least-
squares by cubic splines implies an D{h“} approximation order to a function with bounded
derivatives of order four (provided there are enough data points for a well-posed solution).
On the other hand. even in the univariate case, the location of a jump discontinuity in a
piecewise smooth function is inherently up to an @(h) error. Therefore, the best we can
expect from a good approximation procedure for f such as above is the following:

Theorem 3.2. Consider Problem B on D and let gy be a bi-cubic spline function (with
knots” grid size 8 = mh) which gives a local minimum to (3.3), with g, and g_ defined by
minimizing (3.5). Denote the segmentation defined by gy by G, ={ gy(x) = 0, 5 € X}
and G_ = { xi | gy(xi) <0, x; € X}. For C =0, and for h small enough, there exists such
local minimizer gy such thatif x; € G, ND_ or x; € G_ND, then dist(x;,y) < Ch'.

"

&

-10

"

FIGURE 7. Discontinuity across a noisy curve [[13;3]x[[1[13;3]

Proof. The Theorem says that the zero level set of gy, ¥, separates well the data set X into
the two parts, and only data points which are very close to ¥ may appear in the wrong
segment. In order to prove this result we first observe that the curve ¥ can be approximated
by the zero level set of bi-cubic splines with approximation error < C;h*. One such spline
would be sy, the approximation to the signed distance function related to the curve 7.
Fixing gy = 5, determines g, and g_ which minimize F for this gy, and we denote the
corresponding value Fg[s,]. We note that the contribution to the value of Fg is o{h*) (as
h — ) from a point which fall on the right side of ¥, and it is O(1) from a point on the
wrong side of ¥ For a small enough h, only a small number of points x; € X will fall
in the wrong side of ¥. and any choice of g, which induces more points in the wrong
side will induce a larger value of Fg. Obviously, the minimizing solution induces a value
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FIGURE 8. The approximation using noisy curve data

Fg < Fg[sy] . and this can be achieved only by reducing the set of "wrong side’ points.
Since g, = s, already defines an O{h*) separation approximation, only points which are at
distance D{h‘j'_] from ¥ may stay on the wrong side in the local minimizer which evolves by
a continuous change of s, which reduces Fg. O

Corollary 3.3. If the least-squares problems defining g, and g_ by {3.4) are well-posed,
we gel

(3.6) If—g+lwn, <Ch*,
(3.7) If—g_llep <Csh*.
15 -\-slﬂl

2
4 "“\-.M i -‘-:_,. Al=iin
o . z cLl 4
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- . ] ]

FIGURE 9. The underlying function and its 1st type noisy data

Remark 3.4. The above well-posed condition can be checked while computing g, and
g_. Also, an O{h‘ﬂ approximation order can be obtained by using proper boundary con-
ditions in the computation of g, and g_, e.g., by extending the data by local polynomial
approximations, as suggested in (3.5).

Remark 3.5. The need to restrict the set of data points defining g, and g_ in (3.4) emerged
in view of the condition needed for the proof of Theorem 3.2. As shown in the numerical
example below, this restriction may be very important in practical applications.
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3.4. Noisy data of the 1st tvpe. This section demonstrate the performance of the method
for the approximation of noisy data of a function with jump discontinuity. Furthermore,
we use this example to emphasize the importance of using the restricted sets in Fg rather
than using Fg. The underlying function and its noisy version are displayed in Figure 9. In
the numerical test we have used the same mesh and knot sizes as in the previous example.
In figure 10 we show the results with and without restricting the the set of points which
participate in the computation of Fg. In the left graph we note that the approximation
in the inner region is infected by wrong values from the outer region, and this is clearly
corrected in the right graph where the least-squares approximations use values which are
not to close the discontinuity curve. In Figure 11 we see two approximations to the exact
singularity curves (in red), using different knots’™ grid sizes. & = 1.5 and & = 2.. together
with the singularity curve of the underlying function. As expected. a smaller & enables
higher flexibility of gy and a better approximation to the exact curve.

!
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FIGURE 10. Two approximations using different point sets in the least squares
approximation

3.5, 3-corner Jump Discontinuity - Problem C. Combining elements from Problems
A and B, we can now approach the more complex problem of a 3-comer discontinuity.
Consider the case of a function defined over a domain D, with a discontinuity across three
curves meeting at a 3-corner, subdividing [ into three sub-domains Dy, I); and 5, as in
Figure 12. We assume that f|p. is smooth on D;, i=1.2.3. Following the above discussions,
the following procedure is suggested:

B B § E R &

i
i}

"
1
I
@

5 1] E-] ) = u k- L L= - o = ke F- ] = « 48

FIGURE 11. Two approximations to the exact singularity curves - using
different knots’ grid sizes, 6 = 2: and 6 = 1:5.
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We look for three spline functions, {g;};_,. approximating f on {D;};_| respectively.
Here, the approximation of the segmentation into three domains cannot be done via a zero
level set approach. Instead, we look for an additional triplet of spline functions, {h;}f 1
which define approximations {E;}? | to {D;}; | as follows:

Ey={x|hx)>maxc(ha(x), ha(x)},
Ex={ x| ha(x) = max(h (x),h(x) },
Exy={ x| ha(x) > max(hy(x).h2(x)}.

Denoting |u2. & =¥ u*(xi) we would like to minimize the following objective func-
tion:

(3.8) Fe(p) = |f — g1l + If — g2l2.E, + If — 83255 — minimun.

Hence, the segmentation is defined by a max operation as in Problem A. Given a seg-
mentation of D into {E;}I-3 - the triplet {g;}? ; 1s defined, as in Problem B, by a system of
linear equations which de fines the least-squares solution of (3.8). To achieve better approx-
imation on {£;}? |, in view of Theorem 3.2, the least-squares approximation for {g;}7 |
should exclude data points which are near joint boundaries of {£;}7 |.

For a numerical illustration of Problem C and the approximation obtained by minimiza-
tion of Fr- we took noisy data from a function with 3-corner discontinuity in D = [-2,2]%.
All the unknown spline functions, {g;};_, and {h;}7_, are bi-cubic with a square grid of
knots of gnd size 8 = 2. Since only the splines {h;}f , enter in a non-linear way into Fg,

FIGURE 12. 3-corner discontinuity - noisy data and approximation

the minimization problem involves 3 = 9 = 27 unknowns. As in all the previous exam-
ples we have used a differential evolution algorithm for finding an approximate solution of
this minimization problem. The noisy data and the resulting approximation are shown in
Figure 12.

4. SUMMARY AND ISSUES FOR FURTHER RESEARCH:

We have introduced a unified framework for approximating functions with normals’
discontinuity or jump discontinuity across curves. The method may be viewed as an exten-
sion of the well known procedures of boolean operations in solid geometry. In this work
it i1s suggested to use a kind of boolean operations on splines as an approximation tool.
Through a series of non-trivial examples we have presented the potential of this approach
to achieve high quality approximations in many applications. It is interesting to note that all
the non-linearity in the suggested approximations can be expressed by the sign operation,
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or equivalently the (-), operation. The approximation procedure requires high dimen-
sional non-linear optimization, and thus the complexity of computing the approximations
is very high. For all the numerical examples in this paper we have used a very powerful
matlab code written by Markus Buehren, based upon the method of Differential Evolution
([7]). The execution time ranges from 1 second for the simple univariate problem to 80
seconds for the bivariate Problem C. The differential evolution algorithm usually finds a
local minima and not "the global minimizer'. Yet, as demonstrated, 15 finds for us very
good approximations, and it seems to be robust to noise. A main issue for further study
would be the acceleration of the optimization process, e.g., by generating good initial can-
didates for the optimization. Yet, in spite of the high computational cost, the method may
still be very useful for high quality up-sampling, and for functions (or surfaces) with few
singularity curves. In a scene with many discontinuities we would suggest to subdivide
the domain into patches, each containing one or two singularity curves. Choosing partially
overlapping patches, the local approximations can be blended into a global approximation,
as demonstrated in Section 3.2, Another simple idea is based upon Corollary 3.3, which
tells us to 1gnore few data points near the approximated singularity curve, in order to attain
higher approximation order.
Other important issues for further research would be the following:

(1) Improved optimization: Here we believe that geometric considerations may be
used to significantly accelerate the minimization procedure. Gradient-descent al-
gorithms, similar to those used in [4], may also be helpful here.

(2) Simple rules for choosing grid size for the splines.

(3) Other basis functions instead of splines.

{(4) Using £;-norm instead of the f;-norm in the objective functions.

(5) Application to 3D surface data via the moving least-squares method.

(6) Further approximation analysis.
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