ISSN: 2455-6742

INSPIRE

(A Six Monthly International On-line Mathematical Research Journal)

Volume 04 November 2018

Published by
(An Official Publication)

DEPARTMENT OF MATHEMATICS
INSTITUTE FOR EXCELLENCE IN HIGHER EDUCATION, BHOPAL (M. P.)
(An Autonomous Institution with Potential for Excellence Declared by UGC)

(‘A' Grade Accredited by NAAC)
2018




INSPIRE ISSN: 2455-6742
Vol 04, November 2018 No. 01

Chief Patron
Commissioner, Higher Education of Madhya Pradesh, Bhopal (M.P.)

Patron
Dr. Meera Pingle, Director,
Institute for Excellence in Higher Education, Bhopal (M. P.)

Editor
Dr. Manoj Kumar Shukla
Department of Mathematics,
Institute for Excellence in Higher Education, Bhopal (M. P.)

Associate Editor
Dr. P. L. Sanodia
Department of Mathematics,
Institute for Excellence in Higher Education, Bhopal (M. P.)

Editorial Board:
Dr. Manoj Shukla, Dr. A. S. Saluja, Dr. S. S. Shrivastava, Dr. M. S. Chouhan, Dr.
S. K. Dwivedi, Department of Mathematics, IEHE, Bhopal (M. P.).

Screening Committee:

Dr. A. K. Pathak, OSD, Higher Education Department, Bhopal (M. P.), Dr. Anil
Rajpoot, Govt. P. G. College, Sihore (M. P.), Dr. S. S. Rajpoot, Govt. P. G.
College, ltarsi. Dr. M. S. Rathore, Govt. College, Ashta (M. P.), Dr. Sujoy Das,
MANIT, Bhopal, Dr. Deepak Singh, NITTTR, Bhopal, Dr. S. K. Bhatt, Govt.
Science College, Raipur (C.G.), Dr. S. K. Nigam, Govt. P. G. College, Satna (M.
P.), Dr. D. P. Shukla, Govt. Science College, Rewa (M. P.), Dr. K. S. Bhatia,
Govt. Home Science College, Jabalpur (M. P.), Dr. L. S. Singh, Avadh
University, Faizabad (U. P.), Dr. Pankaj Shrivastava, MNNIT, Allahabad (U. P.).

Advisory Board:

Prof. V. P. Saxena, Ex. Vice Chancellor, Jiwaji University, Gwalior., Prof. M. A.
Pthan, Aligarh Muslim University, Aligarh (U. P.), Prof. H. S. P. Shrivastava,
Prof. R. C. Singh Chandel, Prof. R. P. Agrawal, Texas A & M University-
Kingsville, Texas, Prof. Erdal Karapinar, ATILIM University, TURKEY..



INSPIRE ISSN: 2455-6742
Vol 04, November 2018 No. 01

This Volume of

INSPIRE
is being dedicated to

Aryabhatt: Master Astronomer and Mathematician

Aryabhatt was born in 476 CE (Common Era) in Kusumpur (Bihar).
Aryabhatt's intellectual brilliance remapped the boundaries of mathematics and
astronomy. In 499 CE, at the age of 23, he wrote a text on astronomy and an
unparallel treatise on mathematics called "Aryabhatiyam." Aryabhatt formulated
the process of calculating the motion of planets and the time of eclipses.
Aryabhatt was the first to proclaim that the earth is round, it rotates on its axis,
orbits the sun and is suspended in space — 1000 years before Copernicus
published his heliocentric theory. He is also acknowledged for calculating p (Pi)
to four decimal places: 3.1416 and the sine table in trigonometry. Centuries later,
in 825 CE, the Arab mathematician, Mohammed Ibna Musa credited the value of
Pi to the Indians, "This value has been given by the Hindus." And above all, his
most spectacular contribution was the concept of zero without which modern
computer technology would have been non-existent. Aryabhatt was a colossus in
the field of mathematics.
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FOREWORD

The present volume of INSPIRE contains the various research papers of
Faculty and Research Scholars of Department of Mathematics, INSTITUTE FOR
EXCELLENCE IN HIGHER EDUCATION, BHOPAL (M. P.).

For me it is the realization of a dream which some of us have been
nurturing for long and has now taken a concrete shape through the frantic efforts
and good wishes of our dedicated band of research workers in our country, in the
important area of mathematics.

The editor deserves to be congratulated for this very successful venture.
The subject matter has been nicely and systematically presented and is expected
to be of use to the workers.

(Dr. Meera Pingle)
Director & Patron
IEHE, Bhopal (M. P.)
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SOME FIXED POINT THEOREMS IN L-SPACES
A. S. Saluja, Department of Mathematics,
Institute for Excellence in Higher Education, Bhopal, (M.P.)
e-mail : drassaluja@gmail.com

ABSTRACT : In the present paper we have given some fixed point theorems in
L-spaces . The results obtained generalize many previous results.

KEYWORDS: L-Space, fixed Point, Contraction Mappings, Separated space etc.

MATHEMATICAL SUBJECT CLASIIFICATION : Primary47H10,
Secondary 54H25.

1. INTRODUCTION :

Kashara [5] has introduced L- space, then Yeh [8] has give some fixed
point theorems in L-Spaces. It seems that the notion of metric is not necessary in
the Banach contraction principle and some of its generalizations. The purpose of
this paper is to obtained some fixed point results in L-Spaces.

To establish our main result we need the following definitions:

2. PRELIMINARIES :

Definition: 2.1  Let N be the set of all non-negative integers and M be a
nonempty set. Then L-Space is defined to be the pair (M, —) of the set M and a
subset — of the set M™ x M satisfying the following two conditions :

(L) If X, =x e Mforall neN,then ({x,} ey x) €—

(L) 1f ({xu}nen, x), then ({xni}i o x) € — for every subsequence

{xni}i EN, of {xn}n EN

In what follows instead of writing ({xn}n en, x) € -, we shall write {x,}, en
— X or X, — x and read {x,},ey converges to Xx. Further we give some
definitions regarding L-Space.

Definition: 2.2 A L —space (M, —) is said to be separated, if each sequence in
M converges to at most one point in M .

Definition: 2.3 A mapping f on L — space (M, —) into an L —space (M —) is
said to be continuous if x, = X implies f(xni) —'f(x) for some subsequence
{xni}i EN, for {xn}n EN:

Definition: 2.4 Let d be a nonnegative extended real valued function on M x M
:0< d(x,y) < o forall x, y € M. Then the L —space (M, —) is said to be d-

complete if each sequence {x,},en IN M with Y72, d(x;,x;41) < oo converges
to at most one point of M.
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3. MAIN RESULTS

Theorem 3.1 : Let (M, —) be a separated L —space which is d-complete for a
non-negative extended real valued function d on M x M with d(x, X) = 0 for each
x in M and f be a continuous self mapping satisfying the following two
conditions :
(3.1.1) Thereexista; (I=1,2,...,5),pandqwith¥>_,a;>p,p-a,>0, 0< q
< oo such that

ard(fx, fy) + axd(x, fx) + asd(y, fy) + asd(fx, £x) + asd(y, °x)

—min {d(x, fy), d(y, fx), d(x, f), d(fy, fx)} < pd(x, y),

forx,y in Mwithd(x,y) <q;
(3.1.2) There exist u € M such that d(u, fu) <qg.
Then f has a fixed point and the sequence {f™u}, ey converges to the fixed point .
PROOF : Let Xo= u,Xp= fXx,1forn=1,2,.... Itfollows from (3.1.1) and
(3.1.2) that

a1d(Xn, Xn+1) + @2d(Xn-1, Xn) + a3d(Xn, Xn+1) + aad(Xn, Xn+1) + asd(Xn, Xn+1)

—min {d(Xn-1, Xn+1), d(Xn, Xn), d(Xn-1, Xn+1), d(Xn+1, Xn+1)} < pd(Xn-1, Xn)

or, d(Xn Xn+1) < #z%d(xn,l, Xn) ... (3.1.3)
Then by induction, we have
n
d(Xn Xne1) < (Hf—a) d(u, fu) ..(3.14)

for every n in N. Therefore we have Y 5o d (X, Xp41) < © .
Thus the d-completeness of M implies that the sequence {f™u},eny CONverges to
some z € M. Hence by the continuity of f, there is a subsequence {f™u};ey Of
{f™u},en, Such that

f (f™u) — fz.
But, since that {f (f™u)};en IS a subsequence of {f™u},en , hence we have f
(f™u) - z.

So that fz =z . This completes the proof of the theorem.

Theorem 3.2 : Let (M, —) be an L —space which is d-complete for a
continuous non-negative extended real valued function d on M x M with the
properties :

(3.2.1) d(x,y)= 0 impliesthat x = y;

(3.2.2) d(x,x)= 0 foreachx e M

If f is continuous self mapping of M satisfying (3.1.1) and (3.1.2), then f has a

fixed point .
PROOF : As in the proof of theorem 3.1, we have by (3.1.4)
n
p—az
d(xn, Xn+1) < (m) d(U, fU) ........ (3.1.5)
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holds for every n in N and the sequence {f"u},cy cONverges to some z € M and
that
f(f™u) — fz
for some subsequence {f™u};ey Of {f™u}lnen -
Therefore by the continuity of f we have
d(f (F), (Fhu)) — d(fz, 2)
for some subsequence {f™u};en Of {f™u}lpen -
Thus,  d(f(f™uw), (f™u)) — 0.
So that d(fz, z) =0 and therefore, fz = z, i.e. z be a fixed point of f.
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1. Introduction and preliminaries

Let (X,d) be a metric space and CB(X) denotes the collection of all nonempty
closed and bounded subsets of X. ForA, BECB(X), define

H(A,B) =max{supg.4 d(a, B), supp.g d(b, A),}, where d(x, A) = inf{d(x,a): a €A }is
the distance of a point x to the set A. It is known that H is a metric on CB(X),
called the Hausdorff metric induced by the metric d.

Definition 1.1.[5] Let X be any nonempty set. An element x in X is said to be a
fixed point of a multi-valued mapping T : X = 2%'if x € T x, where 2* denotes the
collection of all nonempty subsets of X.

A multi-valued mapping T : X = CB(X) is said to be a contraction if , H(Tx,
Ty)< kd(x, y), for all x, y €X and for some kin [ 0,1).

The study of fixed points for multi-valued contractions using the
Hausdorff metric was initiated by Nadler [15] who proved the following
theorem.

Theorem 1.2. ([15]) Let (X,d) be a complete metric space and T : X - CB(X) be a
contraction mapping. Then, there exists x € X such that x € T x.

Later, an interesting and rich fixed point theory was developed. The theory of
multi-valued maps has application in control theory, convex optimization,
differential equations and economics (see also [7]). On the other hand,
Matthews [10] introduced the concept of a partial metric as a part of the study
of denotational semantics of dataflow networks. He gave a modified version of
the Banach contraction principle, more suitable in this context (see also [8,11]).
In fact, (complete) partial metric spaces constitute a suitable framework to
model several distinguished examples of the theory of computation and also to
model metric spaces via domain theory (see, [6,9,10,11-14]).

Consistent with [2,3,10], the following definitions and results will be needed in
the sequel.
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Definition 1.3. [5] Let X be a nonempty set. A function p : X x X - R+ is said to be
a partial metric on X if for any x, y, z €X, the following conditions hold:
(P1) p(x, x) = ply, y) = p(x, y), if and only if x = y;
(P2) plx, x) < p(x,¥)
(P3) p(x,y) = p(y, x)
(P4) p(x, y) <p(x, y) + p(y, 2) — p(y, y)

The pair (X, p) is then called a partial metric space.

If p(x, y) =0, then (P1) and (P,) imply that x = y. But the converse does not
hold always.

A trivial example of a partial metric space is the pair (R+, p), where p : R" x
R" > R+ is defined as p(x, y) = max { x, y }(see also [1]).

Example 1.4. ([10]) If X={[a,b] : a,b €ER, a b }, then p([a,b] , [c,d] ) = max{b,d} -
min{a,c} defines a partial metric p on X.

For some more examples of partial metric spaces, we refer to [2,4,12,14].

Each partial metric p on X generates a Ty topology t, on X which has as a base
of the family open p-balls { By(x,€): x €X, € > 0}, where By(x,g) = { y € X: p(x, y)
<p(x, x) + €}, for all x EXand € > 0.

Observe (see [10, p. 187]) that a sequence { x,} in a partial metric space (X, p)

converges to a point x € X, with respect to t,, if and only if p is a partial metric

on X, p(x x)= lim p(x x,), then the function p®: X x X > R" given by
n—»o°
o (X, ¥) = 2p(x, y) - p(x, x) - ply, y), defines a metric on X.
Furthermore, a sequence { x,} converges in (X, p’) to a point x € X if and only if
lim p(x,,,xm)= Iimp(x,,,x)= p(x,x). (1.1)
n,mseo n—>oo

Definition 1.5. ([10]) Let (X, p) be a partial metric space.

@ A sequence { x,} in X is said to be a Cauchy sequence if lim, m3ep(Xn, Xm) €Xists
and is finite.

®) (X, p) is said to be complete if every Cauchy sequence { x,,} in X converges with
respect to T, to a point x € X such that lim,s.p(x, x,) = p(x, x). In this case, we
say that the partial metric p is complete.

Lemma 1.6. ([2,10]) Let (X, p) be a partial metric space. Then:

(@ A sequence { x,} in X is a Cauchy sequence in (X, p) if and only if it is a Cauchy
sequence in metric space (X, p°).

() A partial metric space (X, p) is complete if and only if the metric space (X, p°)
is complete.
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2. Partial Hausdorff metric
Let (X, p) be a partial metric space. Let CBP(X) be the family of all non-empty,
closed and bounded subsets of the partial metric space (X, p), induced by the
partial metric p. Note that Closedness is taken from (X,t,) (Tpis the topology
induced by p) and boundedness is given as follows:

A'is a bounded subset in (X, p) if there exist xo € X and M >0 such that for
all a €A, we have a EBy(xo, M), that is, p(xo,a) <p(a,a) + M.

For A, B =(CBP(X) and x = X, define

p(x,A)=inf{p(x,a), ac A},  5,(A,B)=sup|{p(a,B): ac A} and
5p(B,A) =sup{p(b, A): b < B}.

It is immediate to check that p(x, A) = 0 = p®(x, A) = 0 where p®(x, A) = inf{ p°(x,a),
aEA}.

Remark 2.1. ([2]) Let (X, p) be a partial metric space and A any nonempty set in
(X, p), then a € Aif and only if p(a, A) =p(a,a), (2.1)

Where, A denotes the closure of A with respect to the partial metric p. Note that
Ais closed in (X, p) if and only if A = A

Now, we shall study some properties of mapping 8,: CB°(X) x CB°(X) >0, o=).

Proposition 2.2.[5] Let (X, p) be a partial metric space. For any A, B, C € CB"(X),
we have the following:

0 (i) dp (A, A) = sup{p (@, a):a EA};

(ii) (i) op A, A) < Op (A, B);

(iii) (i) dp (A, B) = 0implies that A SB;

(iv) (iv) dp @A, B) < 6p@A, C) + Op(, B) —infcECp c, c).

Proposition 2.3.[5] Let (X, p) be a partial metric space. For all A, B, C € CB°(X), we
have
(h1) Hy(A, A) < Hy(A, B);
(h2) Ho(A, B) = Hy(8B, A);
(h3) Hp(A.B) < Hy(A, C) + Hy(C, B) - infc € C p(c,c).
Corollary 2.4. [5]Let (X, p) be a partial metric space. For A, B € CB"(X) the
following holds
Ho(A, B) = 0 implies that A = B.
Remark 2.5.[5] The converse of Corollary 2.4 is not true in general as it is clear
from the following example.
Example 2.6.[5] Let *=[ 0,'] be endowed with the partial

metric ?: “x ¥ R+ defined by p(x, y) = max{x, y }.

06



INSPIRE ISSN: 2455-6742
Vol 04, November 2018 No. 01 04-11

From (i) of Proposition 2.2, we have
Ho(X, X' = 8,(X, X' = sup{ x: 0 x 1} =10,
In view of Proposition 2.3 and Corollary 2.4, we call the mapping H,: CB”(X) x
CB°(X) > [ 0, +o°), a partial Hausdorff metric induced by p.
Remark 2.7.[5] It is easy to show that any Hausdorff metric is a partial Hausdorff
metric. The converse is not true (see Example 2.6).

3. Fixed point of multi-valued contraction mapping
We start with the following lemma needed to prove our main result.
Lemma 3.1.[5] Let (X, p) be a partial metric space, A, B € CB°(X) and h > 1. For
any a € A, there exists b = b(a) € B such that
p(a,b)< hHy(A, B). (3.1)
Aydi et al[5] proved the following:

Theorem 3.2. Let (X, p) be a complete partial metric space. If T: X > CB°(X) is a
multi-valued mapping such that for all x, y € X, we have

Hy(Tx. Ty) <kp(x,y) (3.2)
where k € (0,1). Then T has a fixed point.

Now let us prove our main result,

Theorem 3.3. Let (X, p) be a complete partial metric space. If T: X > CB°(X) is a
multi-valued mapping such that for all x, y € X, we have

Hp(TX, T}’) S k max{p(x, J’): p(x» TX), p(y' TX)}
where k € (0,1). Then T has a fixed point.
Proof. Let xo € X and x1 € T xg. From Lemma 3.1 with h = \/%, there exists x, € T x;
1
such that p(x, x,)< N Hy(Txo, T x1).

Hp (Txo, T x1) < kmax{p(xo, x1), P(xo, Txo, p(x1, Txo))}

1 k
ﬁ Hp(TxO’Txl) = \/_Ep(xo,xﬂ = \/Fp(xo,xﬂ
p(xy,x;) < Vkp(xg,x1). For x;, € T xy, there exists x3 € T x, such that

p(x,, x3)< Vk(Txy, T x,). Continuing this process, we obtain a sequence {x,} in
X such that

X1 € TXnand p(Xp41 , %n) < Vkp(xy, x,_q) forall n > 1. (3.3)
Now from (3.3) and by mathematical induction, we obtain
P(Xpt1, X)) < (\/En)p(xo,xl) foralln € N. (3.4)

Using (3.4) and the property (P4) of a partial metric, for any m € N*, we have
p(xn- Xn4m) < P(Xn, Xn41) + P(Xnt1. Xng2) + -« + P(Xngm—1, Xn+m)
(k)" p(x0. x1) + (VK)"™ T p(xo, x1) + - + (VY™ p(xo, x1)

(Vi ! (Vi)™ 1) p(xo, x1)
p(Xo.X1) — .
1-vk 0 asn >+eo (since 0 <k < 1).
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By the definition of p°, we get for any m € N*,

ps(Xn-Xn+mJ < 2p(Xn, Xn+m) — 0 asn — +oo, (3.5)
This yields that { x,} is a Cauchy sequence in (X, p°). Since (X, p) is complete, then
from Lemma 1.6, (X, p°) is a complete metric space. Therefore, the sequence { x,}
converges to some X € X with respect to the metric p’, that is, lim,>+ p°(x,, x*)
= 0. Again, from (1.1), we have

ENC A ¥y _ 1; _
p(x X )_nLlTxp(X”'x )_nﬂTxp(xn.x;x)—D. (3.6)
Since Hp(Txn. Tx*) <kp(x2.x"), therefore
limy,_, ;o H,(Tx,, Tx*) = 0 (3.7)

Now x,.; €T x, gives that
p(X;H,]. Tx*) < 8p(Txn, Tx*)Hp(Txn, Tx*)
From (3.7), we get
lim p(xn41, Tx7) =0 (3.8)
n—-+oo
On the other hand, we have
p(x*. Tx*) < p(xX*. Xny1) + p(Xnp1. TX),
Taking limit as n -+eo and using (3.6) and (3.8), we obtain p(x*. Tx") =0,
Therefore, from (3.6) (p(x*. x") =0), we obtain
p(x*. x*) = p(x*, Tx*)’
which from (2.1) implies that x* ¢ T« = Tx*. O
To underline the usefulness of partial metric, we give the following very
simple illustrative examples.

Example 3.3. [5] Let X ={0,1,4} be endowed with the partial metric p: X x X-> R+
defined by

1 1
p o) = X mYIE gy maxix Yigor alix, y € X.

Note that p(1,1) = 770 and p(4,4) =2 =0, so p is not a metric on X.
Asp’(x,y) = | x-y | so (X, p) is a complete partial metric space.
Note that {0} and {0,1} are bounded sets in (X,
p). Infact, if x E{Oél, 4}1, thenx €0} <p

(x(0) =px. e 7%~ 2x
©x=0
©x € {0}.

Hence {0} is closed with respect
to the partial metric p. Also
x€{0.1} & p
(x.{0,1}) = p(x,%)

in{ 2% Lix— 114 Lmaxpr 1y} =
ming =X, —|X — — MaxiX, = —
4" 3 2 2y
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< x €{0,1}.
Hence {0,1} is closed with respect
to the partial metric T: X >
CBp(X) by p. Now, define the
mapping
7(0) = T(1) ={0} and T(4)={0,1}.
We shall show that, for all x, y € X, the contractive condition (3.2) is satisfied
with k = 2. For this, we consider the following cases:
e X,y E {0,1} . We have
Hp
(T, T(y)) =Hp({0},{0}) =0
, and (3.2) is satisfied
obviously.

« x€ {0,1}, y =4. We have
(T(0).T(4)=Hy(T(1),T(4)

= Hp({0}.10,1})
=max{p(0. {0, 1}), max{p(0,0). p(1,0)}}
3 11

3
=< — =kp(1,4) < = =kp(0, 4).
H, 253 p( )<2 p(0, 4)

o« x=y=4. We have
(T4),T4)=Hp({0,1},{0,1})
=sup{p(x,x): x € {0, 1}}
=max{p(0,0), p(1, 1)}
Hp :%é]:kp(‘l.‘l).
Thus, all the hypotheses of Theorem 3.2 are satisfied. Here, x = 0 is a fixed point
of T.
Example 3.4.[5] Let X={O,1,2} be endowed with the partial metric”: XxX> R+
defined by

1
p(0,0) =p(1,1) =0, p* ¥ =73,

p(0,1) =p(1,0)=1/3
p(0,2) =p(2,0)=11/24
p(1,2)=p(2,1)=1/2

Define the mapping T: X > CB°(X) by
T(0) = T(1) ={0} and T(2) ={0,1}.
Note that, T x is closed and bounded for all x € X under the given partial metric
space (X, p). We shall show that, for all x, y € X, the contractive condition (3.2) is
satisfied with k = 1. For this, we consider the following cases:
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« x,y €{0,1}. We have
Hp(T (0, T()) = Hp({0},{0}) =0,
and (3.2) is satisfied obviously.
« x €{0,1}, y = 2. We have
Hp (T(1), T(2))=Hp(T(0).T(2))

= Hp({0},{0,1})
=max{p(0, {0, 1}), max{p(

111 1
=—< —k=kp(0,2 —k
3 S =k 0.2) <5

e x=y=2.We have

* Hp (T(2).T(2)=H,({0.1}.{0.1))
=sup{p(x,x): x{0,1}}
=max{p(0,0), p(1. 1)}

1
=0< —-k=kp(2,2).
<4 kp ( )

Thus, all the conditions of Theorem 3.2 are
satisfied. Here, x = 0 is a fixed point of T. On the
other hand, the metric p’induced by the partial
metric p is given by p*(0,0) = p°(1,1) = p°(2,2) = 0,

2
p° (0.n:pSu.m:pSm,z):p5{2.0)=§

3
S =n° = —

Now, it is easy to show that Theorem 1.2 is not applicable in this case. Indeed,

forx=0and y =2, we have
(T(0), T(2)) =H({0},{0.1}))

= max{sup{p*(0. {0. 1})}. sup{p*({0. 1}. {0})}}
2 2 .2
H =max[0.§}=§7{§k=kps(0.2).
for any k €(0,1).
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ENCRYPTION AND DECRYPTION TECHNIQUE INVOLVING METRIC SPACE

S. S. Shrivastava, Department of Mathematics,
Institute for Excellence in Higher Education, Bhopal, (M.P.)

ABSTRACT
The aim of this paper is to establish a technique for encryption and
decryption depends on the Connected Components of a Metric Space. We
consider a basis for a Metric Space such that the elements of this basis are the
Components of that Metric Space.

Key Words: Metric Space, Connected Components, Basis, Encryption,
Decryption.

1. INTRODUCTION:

The study of secure communications techniques is called Cryptography
that permits to view a message and its contents only to the sender and recipient.
Cryptography is closely related to encryption.

The original message is known as plaintext, and ciphertext is the
decrypted message. Plaintext and the ciphertext both are written in the terms of
elements from a finite set A, called an alphabet of description.

2. RELATED WORK:

Certain encryption and decryption techniques of a message involving
group theory, metric space and topological space have been established by Rani
[1], Okelo [2], Mahdi [3], Sharma [4], Arora [5], Kahrobaei [6], Iswariya [7] and
others.

Looking importance and usefulness of encryption and decryption
techniques of a message, we propose to establish a new encryption and
decryption techniques of a message involving Metric Space following on the lines
of above authors.

3. BASIC CONCEPTS:
Metric Space:

Let X be a non-empty set. A mapping d : X x X — R which maps X x X into
R (the set of reals) is said to be a metric (or distance function) if d satisfies the
following axioms:

1.d(x,y)=0<x=y VX vyeX

2.d(x, y) =d(y, x) VX yeX

3.d(x,y) <d(x,z) +d(z, y) VXV, zeX

12
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If d is a metric for X, then the ordered pair (X, d) is called a Metric Space
and d(x, y) is called the distance between x and y.

Separated Sets:

Let (X, d) be a metric space and A, B — X. The sets A and B are said to be
separatedif AN B=dand A N B=9.
Disconnected and Connected Sets:

Let (X, d) be a metric space. X is said to be disconnected if it can be
expressed as the union of two non-empty separated sets. Furthermore, X is said
to be connected if it not disconnected, i.e. X cannot be expressed as the union of
two non-empty separated sets.

Let (X, d) be a metric space and Y  X.

(i) The subset Y of X is said to be disconnected if it is disconnected as a

subspace (X, d).

(ii) A subspace (subset) is said to be connected if I is not disconnected.
Components:

Let (X, d) be a metric space and x € X. The largest connected subset of X
containing x, denoted by C(x) is called a component of X containing x. In other
words, C(x) is the union of all connected subsets of X each of which contains x.

The components of metric space X are connected disjoint subspaces of

metric space X whose union is metric space X, such that each non-empty
connected subspace of metric space X intersects only one of them.
Example: Let X be the metric space of all rational numbers with the usual metric
d(x, y) = |x - y| and let E < X. If E has more than one element, we can choose
distinct x, y € E. Further, we can choose an irrational number r between x and y.
letA={ze€E:z<r),B={z € E:z>r}. Then {A, B} becomes a disconnection of E.
Hence, E is connected if and only if E is a singleton. Thus, E is a component if and
only if it is a singleton. We particularly notice that X is disjoint union of its
components.

4. METHODOLOGY:

Consider a message M. Let a finite metric space X s.t. the number of
elements depends on the number of character of that message which we need
to be encode. Let X such that its components form a basis for its metric space.
Each component has the same number as the number of letters.

Let a finite set A of different numbers. Then for each letter of the
message M, we assign a number of A. Now we send this number to a fixed vector
of a set of vectors Y. This fixed vector is sent to a component of X.

Here, we used the following linear transformation

f:R"—R",
f (u) =Bu
13
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where B is a nonsingular matrix and columns of B are the components of X.

where

Encryption and decryption processes
M | A Y Vv C
m|l ||y ||Vl | ela
1
m |2 ||y ||V ||

m|n |y |le|vin|e]c

(i) Message space M is a set of strings or plain text messages over some
alphabet, which needs to be encrypted.

(ii) A is the set of different numbers. Each letter of the message is assigned by a
number, where

IM| = |Al =|Y| = |V|]=]|C| =n, |X]| =n’.

(iii) X is a Metric space with a basis dz.

(iv) Y is transform the message to the vector of secure number.
(v) Vis the vector transform to the component of X.

(vi) C denotes a vector which is known as cipher vector.

5. CRYPTOGRAPHIC ANALYSIS:
THE ENECRYPTION PROCESS (ALGORITHM)

RERn S gl pn

A->Y->V->C

(fogoh):R—>R"

(f o g 0 h) is one-to-one transformation from A onto C.
(fogoh)(xi)

= f(g(h(xy)))

=f(g(yi) [where x; € A,yi € Y, and h : A — Y, therefore h(x;) = yi]

= f(v(i)) [wherey; €Y, v(i) € V,and g: Y >V, therefore g(y;) = v(i)]
= Bv(i)

= CI

THE DECRYPTION PROCESS (ALGORITHM)

rnlpn S pn Lp

CoVoYoA

(fogoh)™:R" >R

(fogo h)™ is one-to-one transformation from C onto A.

14
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(fogoh)™(c)
= (h™og"of *)(c)
=h™ (g™ (f(c))
[where x; € A,y € Y,and h: A —Y, therefore h(x;) = yi]

=h™(g™(B™(c))

[wherey; €Y, v(i) e V,and g : Y — V, therefore g(y;) = v(i)]
= h™(g™(v(i)))
= h_l(yi)

6. CONCLUSION:
We used a basis for a topological space and a linear transformation to
encrypt a message. This method or cryptography was a new proposed method.
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Expansion Formula Involving Generalized Hypergeometric Function
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Abstract

In this paper, we present and solve a two dimensional Exponential Bessel
differential equation, and obtain a particular solution of it involving Fox’s H-
function.

1. Introduction:

The object of this paper is to formulate a two dimensional Exponential-
Bessel partial differential equation and obtain its double series solution. We
further present a particular solution of our Exponential-Bessel equation involving
Fox’s H-function. It is interesting to note that particular solution also yields a new
two dimensional series expansion for Fox’s H-function involving exponential
functions and Bessel functions.

H-function of one variable which is introduced by Fox [5, p.408], will be
represented as follows:

m, n (a', (X')l’ — . s
Hprq XI5 give] = (1/2m) ] 0(s) " ds (1.1)
where i = V(- 1), m n
IL0(b—Bs) T T(1-a+ays)
0(s)= 3 5
rm F(Q=b+Bs) I'(a—ays)
j=m+1 j=n+1

x is not equal to zero and an empty product is interpreted as unity; p, g, m, n are
integers satisfying1<m<q,0<n<p,05(j=1, .., p),Bj(i=1, .. q)are positive
numbers and a; (j = 1, ..., q) are complex numbers. L is a suitable contour of
Barnes type such that poles of I'(b; — 3;s) (j = 1, ..., m) lie to the right and poles of
I'(1-aj+ os) (j = 1, ..., n) to the left of L. These assumptions for the H-function

will be adhered to through out this paper.
According to Braakasma

m, n (aj, )1,p1 = o
Hp,q [x] (b],-, BJ{)L;’] O (|x|”) for small x,
q

p
where X a;—2B;<0and o =minR(b/Br) (h=1, .., k)

j=1 =1
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and ( )
m, n aj, 04)1,p7 = B
q [x] (b],-, BJ{)L:] O (|x]|") for large x,
where n 0 m
Z(XJ—ZCXJ+ZBJ—ZBJEA>O,
j=1 j=n+1 j=1 j=m+1
p q
X oy—-XB<0

larg x| <% Amand B =max R[(aj—1)/oy] (j=1, .., n)
The following formulae are required in the proof:
The integral [2, p.704, (2.2)] (modified form):

[ cos2ux (sinx/2)" ™ H™ "z (sin x/2) " | (@), o)y, p] dx

g pq (by, By,
_ m+1,n+1 (1/2 + w, h), (a;, o)1, p, (W, h)
=n H p+2,q+2 12 | (2u+w, h), (b;, B)wq (W—2u, h} (1.2)

where h >0, |arg z| <% Am, Re(1 —2w) — 2h max [Re(a;— 1)/ay] > 0.

1<j<n

The integral [7, p. 94, (2.2)] (modified form):

W — n_ ok (3, o),
siny J, z yoLR ] d
[y tsiny Ly W gz y o) Ty

W ,1\/ I_|m+1 n+ Z,Zk I (1= (1/2 +w’), 2k), (3}, )1, ps ]
p+l,q+4 ((1+v +w)/2, k), (by, Bj)y, g (W = V)/2, k), ((v+w)/2, k), (1+wW = V)/2, k)

(1.3)
where k>0, |arg z| <% Am, Re(w” + v) + 2k min [Re b;/B;] > 0.
1<j<n

The orthogonal property of the Bessel functions [6, p. 291, (6)]:
.[ XilJa+2n+1(X) Ja+2m+1(x) dX
0

ifm=n
= (1.4)
(4n+2a+2)-1,ifm=n,Re(@a+m+n)>-1.

The following orthogonal property:

n 0O, m#n
| e?'™*cos 2nx dx = /2, m=n=#0 (1.5)
0 T, m=n=0.
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2. Two Dimensional Exponential — Bessel Partial Differential Equation:

Let us consider
ou/ot = ¢ *u/ot® +y2 6°ufdy? + y du/dy + yu, (2.1)
where u=u(x, y, t) and u(x, y, 0) = f(x, y).
To solve (2.1), we assume that (2.1) has a solution of the form:

u(x, y, t) = e4cr2t +(v+2s+ 1)t X(ix) Y(y). (2.2)
The substitution of (2.2) into (2.1) yields:
—Cc[X +4r’X] Y + X [yZY" +yY' + {y2 —(v+2s+ _1)2}Y] =0 (2.3)
We see that X’* + 4r’X = 0 has a solution X = e*"'* and
VY 4+ yY + {y? — (v + 2s + 1)’}Y = 0 is Bessel equation [1, p. 200, (6.25)], with
solution Y = J, ; 25 +1(y). Therefore the solution of (2.1) is of the form:
U(Xf Y, t) =e 4Cf2t tlve2s+ 1)2t leix Jv+25+ 1(V) (24)
In view of the principal of superposition, the general solution of (2.1) is
given by

o0 o0

ux,y,t)=% % Arlse4cr2t+(v+25+1)2t+2rix Jysasealy). (2.5)
r=—ws=0
In (2.5), putting t = 0, we get

fx,y)=2 T A€ )L a1ly). (2.6)
r=—w s=0
Multiplying both sides of (2.6) by y ~* cos2ux Jy + 2w « 1(y), integrating with
respect to y from 0 to o and with respect to x from 0 to =, then using (1.4) and
(1.5), the Fourier Exponential — Bessel coefficients are given by

A,s=(4/m) (v+2s+1)x[ [ f(x,y)y " cos2rxdy . o aly) dy dx (2.7)
0 0

In the view of the theory of double and multiple Fourier series given by
Carslaw and Jaeger [3, pp. 180-183], and many other references, such as Erdelyi
[4, pp. 64-65] etc., the double series (2.6) is convergent, provided the function
f(x, y) is defined in the region 0 < x < p, 0 <y < oo. In brief, the double series (2.6)
converges, if the double integral on the right hand side of (2.7) exists.

In the subsequent section, we take f(x, y) as Fox’s H-function and present
another method to obtain Fourier exponential — Bessel coefficients A, ..

3. Particular Solution Involving Fox’s H-Function:
The particular solution to be obtained is
18
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Uy, 1) =2 1S B edertH (V25 I 210X (v 425+ 1) Ly 4500 a(Y).

r=—ow s=0

m+2,n+2 5 (1/2+w, h), (1-(1/2+w), 2K, (@} 04)1, 5 (W, h)
x H p+3,q+6 Z| (2u+w, h), (1+v+w)/2,k), (b}, Bj)1, g (W=2u, h)

]

((w" =v)/2, k), ((v+w)/2, k), (1+ w" —V)/2, k) (3'1)

valid under the conditions of (1.2), (1.3) and (1.4).
Proof: Let

f(x, y) = (sin x/2)"2*y" siny H r;":[z (sinx/2)*"y % ((sj: gjj))ll: ] dx

00

=X X A )iasaaly). (3.2)

r=—omw s=0

Equation (3.2) is valid, since f(x, y) is defined in the region0<x<p,0<y

Multiplying both sides of (3.2) by v~ J, 4 2w + 1(y) and integrating with
respect to y from 0 to o, then using (1.3) and (1.4). Now multiplying both sides
of the resulting expression by cos 2ux and integrating with respect to x from 0 to
m, then using (1.2) and (1.5), we obtain the value of A, . Substituting the value of
A; sin (2.5), the expansion (3.1) is obtained.

Note 1: The value of A, sis one-half the value of A, s.

Note 2: If we put t = 0 in (3.1), it reduces to a new two dimensional series
expansion for Fox’s H-function involving exponential functions and Bessel
functions.

Since on specializing the parameters Fox’s H-function yields almost all
special functions appearing in applied mathematics and physical sciences.
Therefore, the result (3.1) presented in this paper is of a general character and
hence may encompass several cases of interest.
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ABSTRACT : In this paper, we obtain some fixed point theorems using integral
type inequality in Menger space employing the property (E.A). Our results
improve and generalize several known fixed point theorems existing in the
literature.
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INTRODUCTION: In the year 1942 Menger [21] introduced the notion of a
probabilistic metric space (PM- space) which was, in fact, a generalization of
metric space. The idea behind this is to associate a distribution function with a
pair of points, say (p,q), denoted by Fp,q(t) where t > 0 and interpret this function
as the probability that distance between p and q is less than t, whereas in the
metric space, the distance function is a single positive number. Sehgal [37]
initiated the study of fixed points in probabilistic metric spaces. The study of
these spaces was expanded rapidly with the pioneering works of Schweizer and
Sklar [7]. Jungck [13] introduced the notion of compatible mappings and utilized
the same to improve commutativity conditions in common fixed point theorems.
This concept has been frequently employed to prove existence theorems on
common fixed points. However, the study of common fixed points of non-
compatible mappings was initiated by Pant [29]. Recently, Aamri and Moutawakil
[1] and Liu et al. [34] respectively defined the property (E.A) and the common
property (E.A) and proved interesting common fixed point theorems in  metric
spaces. Most recently, Kubiaczyk and Sharma [15] adopted the property (E.A) in
PM spaces and used it to prove results on common fixed points. Recently, Imdad
et al. [26] adopted the common property (E.A) in PM spaces and proved some
coincidence and common fixed point results in Menger spaces.

1. PRELIMINARIES : Before going to our main result we require some more
definitions and Lemma,
Definition 1.1 [8] : Let X be a non-empty set and L denote the set of all
distribution functions. A probabilistic metric space is an ordered pair (X,F) where
F : X * X—L. we shall denote the distribution function by F (p, q)or Fp,q;p,q€
X and F(p, g, x) will represent the value of F (p, g) at x € R. the function F p, q is
assumed to satisfy the following conditions :

1.Fp,q@®)=1vt>0ifandif p=q
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2.Fp,g(0)=0foreveryp,gqeX

3.Fp,qt)=Faq,p (t) foreveryp,ge X

4. 1fFp,q(t)=1landFq,r(s)=1itfollowsthat Fqr(t+s)=1vp,q,reX
andt,s >0.

In metric space (X ,d) , the metric d induces a mapping F : X * X—L such
that F p, g (t) = H(t-d(p, q) ) for all p, g e X and t € R, where H is the distribution
function defined as

0,ifx <0
H ()= {1,ifx >0
Definition 1.2 [8] :A mapping A: [0, 1] * [0,1] —[0,1] is called t- norm if the
following conditions are satisfied

(1)A(a,1)=aforallae[0, 1], A(0,0)=0,

(2)A(a,b)=A (b, a)

(3)A(c,d)<A(a,b) forc>a,d>b, and

(4) A(A(c,d),c)=A(aA (b, c)) foralla,b, ce[0,1]

Example 1[8]. The following are the four basic t-norms:

(i) The minimum t-norm: Ty(a, b) = min{a,b}.

(if) The product t-norm: Tp (a,b) =a.b

(iii) The Lukasiewicz t-norm: T (a, b) = max{a + b — 1, 0}.

(iv) The weakest t-norm, the drastic product:

_ (minf{a, b}, if max{a, b} =1

To(a b) = { 0, otherwise

In respect of above mentioned t-norms, we have the following ordering:

Top<TL<Tp<Tw.

Definition 1.3 [21]: A Menger probabilistic space is a triplet (X, F, A) where (X,
F) is a PM-space and A is a t- norm with the following condition

Fprt+ts)>A(Fpr(t),Fpr(s) forallp,g,reXandt,s>0.

The above inequality is called Menger’s triangle inequality.

Definition 1.4 [28] : A sequence {X,} in (X, F, A) is said to be a convergent to a
point x € X if for every € > 0 and A > 0, there exists an integer N=N (¢ ,A) such
that F,, x(e) >1-AVn=N (g M)
Definition 1.5 [28] : A sequence {X,} in (X, F, A) is said to be a Cauchy sequence
if for every ¢ > 0 and A >0 , there exists an integer N=N (g ,A) such that
Fep 2 (€) 21-AV n,m >N (g ,}).
Definition 1.6 [28] : A Menger Space (X, F, A) with the continuous t- norm is
said to be complete if every Cauchy sequence in X converges to a point in X.
Definition 1.7 [24]: Let (X, F, A) be a Menger PM Space . A pair (f, g) of self
mapping on X is said to be weakly commuting if and only if Frgy grx (t) >
Frx gx (1) foreach x e Xand t> 0.
Definition 1.8 [31]: Let (X, F, A) be a Menger PM Space . A pair (f, g) of self
mapping on X is said to be compatible if and only if Frgy, grx, () —1 forall t>
0 whenever {x,} in X such that fx,,gx, — z forsomeze Xash - oo.
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Clearly, a weakly commuting pair is compatible but every compatible pair
need not be weakly commuting.

Definition 1.10 [19]: Let (X, F, A) be a Menger PM Space . A pair (f, g) of self
mapping on X is said to be non—-compatible if and only if there exist at least one
sequence {X,} in X such that

lim,, o fx, = lim,,, gx,= 2z, for some z ¢ X, implies that

limy, o Fr g, gfx, (to) (for some to > 0) is either less than 1 or
non-existent.
Definition 1.11 [15] : Let (X, F, A) be a Menger PM Space . A pair (f, g) of self
mapping on X is said to satisfy the property (E.A) if there exist a sequence {xn}
in X such that

lim,,_,e fx, = lim,_ . gx, = z, for some z € X.

Clearly, a pair of compatible mappings as well as non- Comatible mappings
satisfies the property (E.A).

Inspired by Liu et al. [39], Imdad et al. [26] defined the following:
Definition 1.12 [34]: Two pairs (f, g) and (p, q) of self mappings of a Menger PM
space (X,F, A) are said to satisfy the common property (E.A) if there exist two
sequences {Xn}, {yn} in X and some t in X such that

lim,, o fX, = limy, 0 gxp = limy, 0 pxy, = limy, 0 gX,, = 2
Definition1.13. [24] Two finite families of self mappings {A;} and {B;} are said
to be pairwise commuting if:

(I) AiAj = Ain, i,j S {1, 2...m},

(II) BiBj = BjBi, I,j S {1, 2...n},

(iii) AiB; = BjA;, i € {1,2..m},j € {1, 2...n}.

2. MAIN RESULT:

The following lemma is useful for the proof of succeeding theorems.
Lemma 2.1 [14]: Let (X, F, A) be a Menger space. If there exists some k € (0,
1) such that for all p, g € X and all x >0,

f:p'q(kt)@(u)du > fOF”"’(t)(Z)(u)du --- (211
Where ¢ : [0, ) - [0, ) IS @ non-negative summable Lebesque integrable

function such that
f:(?)(u)du > 0 foreach ¢ € [0,1) thenp=q.
Proof. From (2.1.1)

fopp’q(t) d(wdu 2 foF pa(k™0) (w)du

one can inductively write (for m € N)

[P pydu 2 [P0 p@dn > - - -2 [P gydu

> f01®(u)du asm — oo,
Therefore

Fyq(t) 1
J,Podu - [ 8(wdu = 0
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And hence,
10 oGdu ([P 0@du ~ [} 0wdu) = 0
Or,
1
pr,q (t)(z)(u)du <0.

which amounts to say that Fp,q(t) > 1 for all t>0. Thus, we get p =q.
Remark : By setting o(t) = 1 (for each t > 0) in (2.1.1) of Lemma 2.1, we have

[yr 0 0 = Fyq(kt) 2 Foq(0) = [24 0(w)du,

which shows that Lemma 1 is a generalization of the Lemma 2 (contained in
[34]).

In what follows, A is a continuous t-norm (in the product topology).
Lemma 2.2 : Let (X.F, A) be a complete Menger Space and let f, g, p and q be
self mapping of X
satisfying the conditions :

(i) pairs {p, f} and {q, g} satisfies the property E.A.

(i) B(y,) converges for every sequence {y,} in X whenever T(y,,)
converges,
(iii) forany x,y € X and forall t>0,
[ ®0 g ydu = [ puw)du - (221)

Where ¢ : [0, ©) — [0, o) is a hon-negative summable Lebesque integral
function such that

fcl @®(u)du > 0 foreachu e [0,1), where 0 <k < 1 and

m(x,y) =
min{fo,gy (t)’ fo,px(t): F:gy,qy (t): fo,qy(t): ng,px(t);

(iv)  p(X) c g(X) (orq(X) c f(X)).

Then the pair (p,f) and (q,9) share the common property (E.A.).
Proof : Suppose that the pair (p,f) enjoys the property (E.A.),then there exist a
sequence {X,}in X such that

lim,,_,, px, = lim, s fx, = U, forsomeu € X.

Since p(X) c g(X), for each x, there exists y, € X.such that px,, = gy,, and

hence

Fragy®)-Fgyay®  Fragy®)-Fru,px(t)
fo,qy(t) ’ ng,px(t)

lim, . gy, = lim,_,,px, = U

Thus in all, we have px,, = u, fx, — uand gy, — u. Now we assert that
qYn — U.

To accomplish this, using (2.2.1) with x = x, and y = y,, we get

fyrron®pdu > [ odu
Where, m(x,,y,) =
min{Fy, gy, (), Frxnprn (s Fyyayn (O Fraqy, (0, Fay px, (1),
Fronayn®-Foynayn®  Frangyn(®-F ray pan @) )

Frxn.aqyn(®) '

Fgynpxn (©)
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Let, lim,,e0 q(yn) =V
Also, let t >0 be such that F,(.) is continuous in t and kt.

Then, on making n — oo in the above inequality, we get
fOFu'"(kt)(D(u)du >

fmin{Fu,u(t),Ffu,u(t)r Fup(t), Fup(t), Fyu(0), Fu"uéi);f?g];(t) ) Fu,u;‘tu);l?tc,)u(t)
0

7 O(uw)du

Or, f:”'”(kt)w(u)du zfoF”'”(t)Q)(u)du
This, implies that v = u (in view of Lemma 2.1) which shows that the pair
(p,f) and (q,g) share the common property (E.A).
Theorem 2.3 : Let f, g, p and q be self mappings of a Menger space (X, F, A)
which satisfy the inequality (2.2.1) together with the conditions :
(i) the pairs (p, f) and (g, g) share the common property (E.A),
(i) f(X) and g(X) are closed subsets of X.
Then the pairs (p, f) and (g, g) have a point of coincidence each. Moreover,
f, g, p and g have a unique common fixed point provided both the pairs (p, f) and
(g, g) are weakly compatible.
Proof. Since the pairs (p, f) and (g, g) share the common property (E.A), there
exist two sequences {Xn}
and {yn} in X such that
lim, e pXx, = lim, e fXx, = lim, e gy, = lim,_4 qy, = u, for some u
e X.
Since f(X) is a closed subset of X, hence lim,,_,., fx, =u e f(X).
Therefore, there exists a point z € X such that fz = u.
Now, we assert that pz = fz.
To prove this, on using (2.2.1) with X = z, y = y,, we get
[z on "D guw)du
Frzay, - Foynayn® Frzgy,®-Frz,pz®
Ff 20y, ® ’ Fgy,pz®

min{Ffz,qyn (O Ffzpz(©), Fgyn qyn(t). Fgg, qyn(t). ngn'pZ(t)'

o d(uw)du
On taking n — oo, reduces to
fOF pau(kt) d(w)du >
min{Fu,u(t)rFu,,pz(t)' Fyu(t), Fy 4 (8), Fu,,pz(t). Fu,,uIEIf‘)'-:;?),u(f) ; Fu,u;:j’-’:';t(,gz(f) }
d(uw)du

0
[0 gydu > [ puydu

Now on appealing Lemma 2.1, we get pz = u and hence pz = fz. Therefore, z
is a coincidence point

of the pair (p, f).

Since g(X) is a closed subset of X, therefore lim,_,., gy, = u € g(X) and
hence we can find a point

we X such thatgw =u
Now we show that gw = gw.
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To accomplish this, on using (2.2.1) with X = X, y = w, we have
f(fpxn.qw(kt) Q)(u)du > fm(xn,w) O (w)du

0
Wherer m(xn' W) = min{fon,qw(t)v fon,pxn(t)v F:qw,qw(t): fon,qw(t)! ng,pxn(t)!
Frxnqw®-Fgwqw®  Fren gw(®). fon,pxn(t)}
Ffxnqw(t) '
Which on making n — oo, reduces to

foFu,qw(kt) @(u)du 2

Fgw,pan ()

) Fuu®) Fuqw(®)  Fyuyu(t). Fuay(t)
fmln{Fu,u(t)r Fu,,u(t)' Fu,,qw(t)' Fu,,qw(t)r Fu,u(t)r Fuqw (g) , Fgw,u(t) }
0

?(u)du

fyee o 2 ;4 o@wdu
on employing Lemma 2.1, we get qw =uand gw = qw
Therefore, w is a coincidence point of the pair (g, g).
Since the pair (p, ) is weakly compatible and pz = fz, therefore pu = pfz = fpz
= fu.
Again, on using (2.2.1) with x = u, y = w, we have

F, kt
fo puqw )(D(u)du > fom(u'w) ¢ (w)du
Where, m(u,w) =

. Fyu,gw(6). Fgw,qw(t)
mln{Ffu,qw(t)' Ffu,pu(t)' P:qw,qw(t)' Ffu,qw(t)' ng,pu(t)' ngng(t)q

Fru,gw(6). F y pu(6) }

)

Fgw,pu(t)
Or,
F, kt
Jo puul )(Z)(u)du >
min{F £y, (€), Fpu,pu(6), Fu,u(6), Fpuu(t), Fupu(t), Fpu’ig:;?;’ju(t). Fpu'u;?.:fa")pu(t)
f ' ” Pd(uw)du
0
Or,

fOFPu,u(kt) (Z)(u)du > fOFpu,u(t) (Z)(u)du
On employing Lemma 2.1, we have pu = fu = u, which shows that u is a
common fixed point of
the pair (p, f).
Also the pair (q, g) is weakly compatible and gw = gw, hence
qu = qgw = gqw = gu.
Next, we show that u is a common fixed point of the pair (g, g). In order to
accomplish this, using (2.2.1) with x =z, y = u, we get

f:pz'q“(kt) O(w)du >

F (t). F, (t) F (t).F )
; fz, gu.qu fz, fz,
fmln{FfZ'gu(t)’ Fr2pz(t). Fgu,qu(®). F r2,qu(t), Fgupz(6), Zéﬂ;’j’z,qu(t) ’ Zglit’gu,pz(i)pz
0

@(u)du

Or,
fOF”'q”(kt) d(w)du >
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min{Fu,gu(t)r Fu,u(t), Fqu,qu(t), Fu,qu(t), Fquu(t), Fu,qu;i)- iq(l;,)qu(t) , Fu,ql;‘(ij-uF(l;,ju(t)
J- 4 a O(u)du
0
Or,

o o@du = [ owdu
Using Lemma 2.1, we have qu = u which shows that u is a common fixed point of
the pair (g, g). Hence

u is a common fixed point of both the pairs (p, f) and (q, g). Uniqueness of
common fixed point is an

easy consequence of the inequality (2.2.1). This completes the proof.
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