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This Volume of  

INSPIRE 
is being dedicated to  

Aryabhatt: Master Astronomer and Mathematician 
 

  Aryabhatt was born in 476 CE (Common Era) in Kusumpur (Bihar). 

Aryabhatt's intellectual brilliance remapped the boundaries of mathematics and 

astronomy. In 499 CE, at the age of 23, he wrote a text on astronomy and an 

unparallel treatise on mathematics called "Aryabhatiyam." Aryabhatt formulated 

the process of calculating the motion of planets and the time of eclipses. 

Aryabhatt was the first to proclaim that the earth is round, it rotates on its axis, 

orbits the sun and is suspended in space – 1000 years before Copernicus 

published his heliocentric theory. He is also acknowledged for calculating p (Pi) 

to four decimal places: 3.1416 and the sine table in trigonometry. Centuries later, 

in 825 CE, the Arab mathematician, Mohammed Ibna Musa credited the value of 

Pi to the Indians, "This value has been given by the Hindus." And above all, his 

most spectacular contribution was the concept of zero without which modern 

computer technology would have been non-existent. Aryabhatt was a colossus in 

the field of mathematics. 
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FOREWORD 
 

 The present volume of INSPIRE contains the various research papers of 

Faculty and Research Scholars of Department of Mathematics, INSTITUTE FOR 

EXCELLENCE IN HIGHER EDUCATION, BHOPAL (M. P.).  

 For me it is the realization of a dream which some of us have been 

nurturing for long and has now taken a concrete shape through the frantic efforts 

and good wishes of our dedicated band of research workers in our country, in the 

important area of mathematics.   

 The editor deserves to be congratulated for this very successful venture. 

The subject matter has been nicely and systematically presented and is expected 

to be of use to the workers.   

 

                              (Dr. Meera Pingle)  

                       Director & Patron  

IEHE, Bhopal (M. P.) 
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SOME FIXED POINT THEOREMS IN L-SPACES 
A. S. Saluja, Department of Mathematics, 

Institute for Excellence in Higher Education, Bhopal, (M.P.) 

e-mail : drassaluja@gmail.com 

 

ABSTRACT : In the present paper we have given some fixed point theorems in 

L-spaces . The results obtained generalize many previous results.  
 

KEYWORDS: L-Space, fixed Point, Contraction Mappings, Separated space etc. 
 

MATHEMATICAL SUBJECT CLASIIFICATION : Primary47H10, 

Secondary 54H25. 

 

1.   INTRODUCTION :   

 

  Kashara [5] has introduced L- space,  then Yeh [8] has give some fixed 

point theorems in L-Spaces. It seems that the notion of metric is not necessary in 

the Banach contraction principle and some of its generalizations. The purpose of 

this paper  is to obtained some fixed point results in L-Spaces. 

To establish our main result we need the following definitions:  

 

2.  PRELIMINARIES :   

 

Definition: 2.1   Let N be the set of all non-negative integers and M be a 

nonempty set. Then L-Space is defined to be the pair (M, →) of the set M and a 

subset → of the set  M
N
   M satisfying the following two conditions : 

(L1)     If  xn  = x  M for all  n  N, then (*  +       )       

(L2)   If  (*  +       ),  then    ({   }     
  )       for every subsequence  

{   }     
 of *  +     . 

In what follows instead of writing  (*  +       )     ,  we shall write *  +       

→  x or xn → x and read  *  +      converges to x. Further we give some 

definitions regarding L-Space. 

 Definition: 2.2   A L – space (M, →) is said to be  separated,  if each sequence in 

M converges to at most one point in M .    

Definition: 2.3   A mapping f on L – space (M, →) into an L –space (    ) is 

said to be  continuous if  xn  = x implies f(   )   
  f(x) for some subsequence 

{   }     
  for *  +    . 

Definition: 2.4  Let d be a nonnegative extended real valued function on  M  M  

: 0 ≤  d(x,y)  ≤  ∞ for all x, y  M.  Then the L –space (M, →)  is said to be  d-

complete if each sequence *  +      in M with  ∑  (        )      
 
   converges 

to at most one point of M. 
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3. MAIN RESULTS 

 

Theorem 3.1 :  Let  (M, →) be a separated L –space which is d-complete for a 

non-negative extended real valued function d on M  M with d(x, x) =  0  for each 

x in M and  f  be a continuous self mapping satisfying the following two 

conditions :  

(3.1.1)   There exist ai (I = 1, 2,... ,5), p and q with ∑   
 
    > p, p  a2 ≥ 0,   0 <  q  

≤  ∞ such that  

         a1d(fx, fy) + a2d(x, fx) + a3d(y, fy) + a4d(fx, f
2
x) + a5d(y, f

2
x)  

                            min {d(x, fy), d(y, fx), d(x, f
2
x), d(fy, f

2
x)} ≤  pd(x, y),   

for x, y  in M with d(x, y) < q ; 

(3.1.2)   There exist  u  M such that d(u, fu) < q. 

Then f has a fixed point and the sequence *   +    converges to the fixed point . 

PROOF :  Let  x0 =  u, xn =  f xn1 for n = 1, 2, . . .. It follows from (3.1.1) and 

(3.1.2) that  

         a1d(xn, xn+1) + a2d(xn-1, xn) + a3d(xn, xn+1) + a4d(xn, xn+1) + a5d(xn, xn+1)  

                 min {d(xn-1, xn+1), d(xn, xn), d(xn-1, xn+1), d(xn+1, xn+1)} ≤  pd(xn-1, xn) 

Or,   d(xn, xn+1)  ≤  
    

           
 d(xn1, xn)                         .  . . (3.1.3) 

Then by induction, we have  

         d(xn, xn+1)  ≤  (
    

           
)
 

d(u, fu)                          . . . (3.1.4) 

for every n in N. Therefore we have ∑  (        )      
 
   .  

Thus the d-completeness of M implies that the sequence *   +     converges to 

some z  M. Hence by the continuity of f, there is a subsequence *    +     of 

 *   +   , such that   

         f (    ) → fz. 

But, since  that * (    )+      is a subsequence of  *   +    , hence we have  f 

(    ) → z. 

So that  fz = z . This completes the proof of the theorem. 

 

Theorem 3.2 :  Let  (M, →) be an  L –space which is d-complete  for a 

continuous  non-negative extended real valued function d on M  M with the 

properties : 

(3.2.1)      d(x, y) =  0  implies that  x  =  y ; 

(3.2.2)      d(x, x) =  0  for each x  M  

If f is continuous self mapping of M satisfying (3.1.1) and (3.1.2), then f has a 

fixed point . 

PROOF :  As in the proof of theorem 3.1, we have by (3.1.4) 

                  d(xn, xn+1)  ≤  (
    

           
)
 

d(u, fu)                   …….. (3.1.5) 
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holds for every n in N and the sequence *   +     converges to some z  M and 

that  

                  f (    ) → fz  

for some subsequence *    +     of  *   +    .  

Therefore by the continuity of f we have  

                 d(  (    ) (    ) )  → d(fz, z) 

for some subsequence *    +     of  *   +    . 

Thus,       d(  (    ) (    ) )  → 0. 

So that  d(fz, z)  = 0 and therefore, fz = z, i.e. z be a fixed point of f. 
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1. Introduction and preliminaries 

Let (X,d) be a metric space and CB(X) denotes the collection of all nonempty 
closed and bounded subsets of X. ForA, B CB(X), define 
H(A,B) =max*       (   )        (   ) +, where d(x, A) = inf{d(x,a): a  A } is 
the distance of a point x to the set A. It is known that H is a metric on  CB(X), 
called the Hausdorff metric induced by the metric d. 
 
Definition 1.1.[5] Let X be any nonempty set. An element x in X is said to be a 
fixed point of a multi-valued mapping T : X → 2X ,if x   T x, where 2X denotes the 
collection of all nonempty subsets of X. 
  A multi-valued mapping T : X → CB(X) is said to be a contraction if , H(Tx, 
T y)  kd(x, y), for all x, y  X and for some k in [ 0,1). 
  The study of fixed points for multi-valued contractions using the 
Hausdorff metric was initiated by Nadler [15] who proved the following 
theorem. 

 
Theorem 1.2. ([15]) Let (X,d) be a complete metric space and T : X → CB(X) be a 
contraction mapping. Then, there exists x   X such that x    T x. 
 Later, an interesting and rich fixed point theory was developed. The theory of 
multi-valued maps has application in control theory, convex optimization, 
differential equations and economics (see also [7]). On the other hand, 
Matthews [10] introduced the concept of a partial metric as a part of the study 
of denotational semantics of dataflow networks. He gave a modified version of 
the Banach contraction principle, more suitable in this context (see also [8,11]). 
In fact, (complete) partial metric spaces constitute a suitable framework to 
model several distinguished examples of the theory of computation and also to 
model metric spaces via domain theory (see, [6,9,10,11–14]).  
Consistent with [2,3,10], the following definitions and results will be needed in 
the sequel. 
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Definition 1.3. [5] Let X be a nonempty set. A function p : X × X → R+ is said to be 
a partial metric on X if for any x, y, z  X, the following conditions hold: 
(P1) p(x, x) = p(y, y) = p(x, y), if and only if x = y; 
(P2) p(x, x)   (   )  
(P3) p(x,y) = p(y, x) 
(P4) p(x, y)  p(x, y) + p(y, z) – p(y, y) 
  The pair (X, p) is then called a partial metric space. 
  If p(x, y) = 0, then (P1) and (P2) imply that x = y. But the converse does not 
hold always. 
  A trivial example of a partial metric space is the pair (R+, p), where p : R+ × 
R+ → R+ is defined as p(x, y) = max { x, y }(see also [1]). 
 
Example 1.4. ([10]) If X = {[a,b] : a,b  R, a b } , then p([a,b] , [c,d] ) = max{b,d} − 
min{a,c} defines a partial metric p on X. 

For some more examples of partial metric spaces, we refer to [2,4,12,14]. 
Each partial metric p on X generates a T0 topology τp on X which has as a base 

of the family open p-balls { Bp(x,ε): x  X, ε > 0}, where Bp(x,ε) = { y   X: p(x, y) 
<p(x, x) + ε} , for all x  X and ε > 0. 

Observe (see [10, p. 187]) that a sequence { xn} in a partial metric space (X, p) 
converges to a point x   X, with respect to τp, if and only if p is a partial metric 
on X, p(x, x)= lim p(x, xn), then the function ps: X × X → R+ given by 

                        n→∞ 

p
s(x, y) = 2p(x, y) − p(x, x) − p(y, y), defines a metric on X. 

Furthermore, a sequence { xn} converges in (X, ps) to a point x   X if and only if 
 lim p(xn,xm

) = limp(xn,x) = p(x,x).    (1.1) 
 n,m→∞ n→∞ 
 
Definition 1.5. ([10]) Let (X, p) be a partial metric space. 
(a) A sequence { xn} in X is said to be a Cauchy sequence if limn,m→∞p(xn, xm) exists 

and is finite. 
(b) (X, p) is said to be complete if every Cauchy sequence { xn} in X converges with 

respect to τp to a point x   X such that limn→∞p(x, xn) = p(x, x). In this case, we 
say that the partial metric p is complete. 
 

Lemma 1.6. ([2,10]) Let (X, p) be a partial metric space. Then: 
(a) A sequence { xn} in X is a Cauchy sequence in (X, p) if and only if it is a Cauchy 

sequence in metric space (X, ps). 
(b) A partial metric space (X, p) is complete if and only if the metric space (X, ps) 

is complete. 
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2. Partial Hausdorff metric 

Let (X, p) be a partial metric space. Let CBp(X) be the family of all non-empty, 
closed and bounded subsets of the partial metric space (X, p), induced by the 
partial metric p. Note that Closedness is taken from (X,τp) (τpis the topology 
induced by p) and boundedness is given as follows:  

  A is a bounded subset in (X, p) if there exist x0   X and M  0 such that for 
all a  A, we have a  Bp(x0, M), that is, p(x0,a) <p(a,a) + M. 

 
It is immediate to check that p(x, A) = 0 ⇒ ps(x, A) = 0 where ps(x, A) = inf{ ps(x,a), 
a   A } . 
Remark 2.1. ([2]) Let (X, p) be a partial metric space and A any nonempty set in 
(X, p), then a     ̅if and only if p(a, A) =p(a,a),                          (2.1) 
Where, A denotes the closure of A with respect to the partial metric p. Note that 
A is closed in (X, p) if and only if A =  ̅ 
Now, we shall study some properties of mapping δp: CBp(X) × CBp(X) →*0, ∞). 
 

Proposition 2.2.[5] Let (X, p) be a partial metric space. For any A, B, C   CBp(X), 
we have the following: 

(i)  (i) δp(A, A) = sup{p(a,a): a ∈A}; 

(ii) (ii) δp(A, A)   δp(A, B); 

(iii) (iii) δp(A, B) = 0 implies that A ⊆B; 

(iv) (iv) δp(A, B)   δp(A, C) + δp(C, B) −infc∈Cp(c, c). 
 

Proposition 2.3.[5] Let (X, p) be a partial metric space. For all A, B, C   CBp(X), we 
have 

; 
(h2) Hp(A, B) = Hp(B, A); 
(h3) (A, C) + Hp(C, B) − inf    p(c,c). 
Corollary 2.4. [5]Let (X, p) be a partial metric space. For A, B    CBp(X) the 
following holds 
 Hp(A, B) = 0 implies that A = B. 
Remark 2.5.[5] The converse of Corollary 2.4 is not true in general as it is clear 
from the following example. 
Example 2.6.[5] Let X = [ 0,1] be endowed with the partial 

metric p : X × X → R+ defined by p(x, y) = max{ x, y }. 
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From (i) of Proposition 2.2, we have 
Hp(X, X) = δp(X, X) = sup{ x: 0 x . 

In view of Proposition 2.3 and Corollary 2.4, we call the mapping Hp: CBp(X) × 
CBp(X) → * 0, +∞), a partial Hausdorff metric induced by p. 
Remark 2.7.[5] It is easy to show that any Hausdorff metric is a partial Hausdorff 
metric. The converse is not true (see Example 2.6). 
 

3. Fixed point of multi-valued contraction mapping 

  We start with the following lemma needed to prove our main result. 
Lemma 3.1.[5] Let (X, p) be a partial metric space, A, B   CBp(X) and h > 1. For 
any a   A, there exists b = b(a)   B such that 
   p(a,b)  hHp(A, B).    (3.1) 
  Aydi et al[5] proved the following:  

  

Theorem 3.2. Let (X, p) be a complete partial metric space. If T : X → CBp(X) is a 
multi-valued mapping such that for all x, y   X, we have 
 Hp      (3.2) 
where k   (0,1). Then T has a fixed point. 
  Now let us prove our main result,  
 

Theorem 3.3. Let (X, p) be a complete partial metric space. If T : X → CBp(X) is a 
multi-valued mapping such that for all x, y   X, we have 
 Hp(     )        * (   )  (    )  (    )+  
where k   (0,1). Then T has a fixed point. 

Proof. Let x0   X and x1   T x0. From Lemma 3.1 with h = 
 

√ 
, there exists x2   T x1 

such that p(     )  
 

√ 
   (        )  

  (        )      * (     )  (        (      ))+ 
 

√ 
   (        )   

 

√ 
 (     )   √  (     )  

 (      )  √  (     ). For x2   T x1, there exists x3   T x2 such that  

p(     )  √ (        ). Continuing this process, we obtain a sequence *  + in 
X such that  

xn+1   T xn and  (        )  √  (       ) for all     .                 (3.3) 
Now from (3.3) and by mathematical induction, we obtain 

 (        )  (√ 
 
) (     ) for all                                                (3.4) 

Using (3.4) and the property (P4) of a partial metric, for any     , we have 
p  

 

  0 as n →+∞ (since 0 <k < 1). 
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By the definition of ps, we get for any       
 ps  0 as n → +∞.  (3.5) 
This yields that { xn} is a Cauchy sequence in (X, ps). Since (X, p) is complete, then 
from Lemma 1.6, (X, ps) is a complete metric space. Therefore, the sequence { xn} 
converges to some x*   X with respect to the metric ps, that is, limn→+∞ ps(xn, x*) 
= 0. Again, from (1.1), we have 

  p .  (3.6) 
  Since Hp , therefore  
            (      

 )                                               (3.7) 

  Now xn+1  T xn  gives that 
   p Hp . 
  From (3.7), we get 
      

    
 (       

 )                                      (3.8) 

  On the other hand, we have 
   p . 

  Taking limit as n →+∞ and using (3.6) and (3.8), we obtain p .  
  Therefore, from (3.6 0), we obtain 
   p , 
which from (2.1) implies that x  
  To underline the usefulness of partial metric, we give the following very 
simple illustrative examples. 

 
Example 3.3. [5] Let X ={0,1,4} be endowed with the partial metric p : X × X→ R+ 
defined by 

 p  for all x, y   X. 
Note that p(1,1) 0 and p(4,4) = 2 = 0, so p is not a metric on X.  
As ps(x, y) = | x − y | so (X, p) is a complete partial metric space. 

Note that {0} and {0,1} are bounded sets in (X, 
p). Infact, if   {0,1, 4} , then    ̅} ⇔ p 

⇔ x 
 ⇔ x = 0 

        ⇔  x   {0}. 
Hence {0} is closed with respect 

to the partial metric p. Also 
x } ⇔ p

 

 ⇔ x 
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 ⇔ x  {0,1}. 
Hence {0,1} is closed with respect 

to the partial metric T: X → 
CBp(X) by p. Now, define the 
mapping 

 T(0) = T(1) ={0} and T(4) = {0,1}. 
We shall show that, for all x, y   X, the contractive condition (3.2) is satisfied 

with k = . For this, we consider the following cases: 
• x, y   {0,1} . We have 

Hp

, and (3.2) is satisfied 
obviously. 

• x   {0,1} , y = 4. We have 

Hp  
• x = y = 4. We have 

Hp  
Thus, all the hypotheses of Theorem 3.2 are satisfied. Here, x = 0 is a fixed point 
of T . 
Example 3.4.[5] Let X ={0,1,2} be endowed with the partial metric p : X × X → R+ 
defined by 

   p(0,0) = p(1,1) = 0, p , 

   p(0, 1) = p(1, 0) = 1/3 

  p(0, 2) = p(2, 0) = 11/24 

  p(1, 2) = p(2, 1) = 1/2 

  Define the mapping T : X → CBp(X) by 
 T(0) = T(1) ={0} and T(2) = {0,1}. 
Note that, T x is closed and bounded for all x   X under the given partial metric 
space (X, p). We shall show that, for all x, y   X, the contractive condition (3.2) is 
satisfied with k = . For this, we consider the following cases: 
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• x, y  {0,1} . We have 

Hp , 
and (3.2) is satisfied obviously. 

• x  {0,1} , y = 2. We have  
Hp 

 

 

 
 
 

• x = y = 2. We have 
• Hp  

 
 
 
 
 

Thus, all the conditions of Theorem 3.2 are 
satisfied. Here, x = 0 is a fixed point of T . On the 
other hand, the metric psinduced by the partial 
metric p is given by ps(0,0) = ps(1,1) = ps(2,2) = 0, 

 
ps  
 
 
ps  
 

Now, it is easy to show that Theorem 1.2 is not applicable in this case. Indeed, 
for x = 0 and y = 2, we have 

H  
for any k  (0,1). 
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ENCRYPTION AND DECRYPTION TECHNIQUE INVOLVING METRIC SPACE  
 

S. S. Shrivastava, Department of Mathematics, 

Institute for Excellence in Higher Education, Bhopal, (M.P.) 

 
ABSTRACT 

 The aim of this paper is to establish a technique for encryption and 
decryption depends on the Connected Components of a Metric Space. We 
consider a basis for a Metric Space such that the elements of this basis are the 
Components of that Metric Space. 
 
Key Words: Metric Space, Connected Components, Basis, Encryption, 

Decryption.  
 
1. INTRODUCTION: 
 The study of secure communications techniques is called Cryptography 

that permits to view a message and its contents only to the sender and recipient. 

Cryptography is closely related to encryption.  

  The original message is known as plaintext, and ciphertext is the 
decrypted message. Plaintext and the ciphertext both are written in the terms of 
elements from a finite set A, called an alphabet of description. 
 
2. RELATED WORK: 
 Certain encryption and decryption techniques of a message involving 
group theory, metric space and topological space have been established by Rani 
[1], Okelo [2], Mahdi [3], Sharma [4], Arora [5], Kahrobaei [6], Iswariya [7] and 
others. 
 Looking importance and usefulness of encryption and decryption 
techniques of a message, we propose to establish a new encryption and 
decryption techniques of a message involving Metric Space following on the lines 
of above authors. 
 
3. BASIC CONCEPTS:  
Metric Space: 

  Let X be a non-empty set. A mapping d : X  X  R which maps X  X into 
R (the set of reals) is said to be a metric (or distance function) if d satisfies the 
following axioms: 

  1. d(x, y) = 0  x = y    x, y  X 

  2. d(x, y) = d(y, x)    x, y  X 

  3. d(x, y)  d(x, z) + d(z, y)   x, y, z  X   
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  If d is a metric for X, then the ordered pair (X, d) is called a Metric Space 
and d(x, y) is called the distance between x and y. 
Separated Sets: 

  Let (X, d) be a metric space and A, B  X. The sets A and B are said to be 

separated if A  B =  and  ̅  B = . 
Disconnected and Connected Sets: 
 Let (X, d) be a metric space. X is said to be disconnected if it can be 
expressed as the union of two non-empty separated sets. Furthermore, X is said 
to be connected if it not disconnected, i.e. X cannot be expressed as the union of 
two non-empty separated sets.  

 Let (X, d) be a metric space and Y  X.  
(i) The subset Y of X is said to be disconnected if it is disconnected as a 

subspace (X, d). 
(ii) A subspace (subset) is said to be connected if I is not disconnected.  

Components: 

  Let (X, d) be a metric space and x  X. The largest connected subset of X 
containing x, denoted by C(x) is called a component of X containing x. In other 
words, C(x) is the union of all connected subsets of X each of which contains x. 
  The components of metric space X are connected disjoint subspaces of 
metric space X whose union is metric space X, such that each non-empty 
connected subspace of metric space X intersects only one of them. 
Example: Let X be the metric space of all rational numbers with the usual metric 

d(x, y) = |x − y| and let E  X. If E has more than one element, we can choose 

distinct x, y  E. Further, we can choose an irrational number r between x and y. 

Let A = {z  E : z < r), B = {z  E : z > r}. Then {A, B} becomes a disconnection of E. 
Hence, E is connected if and only if E is a singleton. Thus, E is a component if and 
only if it is a singleton. We particularly notice that X is disjoint union of its 
components. 
 
4. METHODOLOGY:  
  Consider a message M. Let a finite metric space X s.t. the number of 
elements depends on the number of character of that message which we need 
to be encode. Let X such that its components form a basis for its metric space. 
Each component has the same number as the number of letters. 
  Let a finite set A of different numbers. Then for each letter of the 
message M, we assign a number of A. Now we send this number to a fixed vector 
of a set of vectors Y. This fixed vector is sent to a component of X. 
  Here, we used the following linear transformation 
   f : Rn ⟶ Rn, 
   f (u) = Bu 
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where B is a nonsingular matrix and columns of B are the components of X. 
 

Encryption and decryption processes 

M A  Y  V  C 

m

1 
1  y1  v(1)  c1 

m

2 
2  y2  v(2)  c2 

        
m

n 
n  yn  v(n)  cn 

 

where 
(i) Message space M is a set of strings or plain text messages over some 
alphabet, which needs to be encrypted. 
(ii) A is the set of different numbers. Each letter of the message is assigned by a 
number, where 
  |M| = |A| = |Y| = |V| = |C| = n, |X| = n2. 
(iii) X is a Metric space with a basis dℬ. 
(iv) Y is transform the message to the vector of secure number. 
(v) V is the vector transform to the component of X. 
(vi) C denotes a vector which is known as cipher vector. 
 
5. CRYPTOGRAPHIC ANALYSIS: 
THE ENECRYPTION PROCESS (ALGORITHM) 

  
 
   

 
   

 
    

  A  Y  V  C 
 (f o g o h) :      
  (f o g o h) is one-to-one transformation from A onto C. 
  (f o g o h) (xi)  
          = f(g(h(xi)))  

          = f(g(yi))  [where xi  A, yi  Y, and h : A  Y, therefore h(xi) = yi]  

          = f(v(i))  [where yi  Y, v(i)  V, and g : Y  V, therefore g(yi) = v(i)] 
          = Bv(i)  
         = ci 
THE DECRYPTION PROCESS (ALGORITHM) 

   
 
   

 
   

 
   

  C  V  Y  A 
 (f o g o h)−1 :      
  (f o g o h)−1 is one-to-one transformation from C onto A. 
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 (f o g o h)−1 (ci)  
          = (h−1og−1of−1)(ci)  
          = h−1(g−1(f−1(ci)))  

[where xi  A, yi  Y, and h : A  Y, therefore h(xi) = yi]  
          = h−1(g−1(B−1(ci))) 

[where yi  Y, v(i)  V, and g : Y  V, therefore g(yi) = v(i)] 
          = h−1(g−1(v(i)))  
          = h−1(yi) 
          = xi 
 
6. CONCLUSION:  
  We used a basis for a topological space and a linear transformation to 
encrypt a message. This method or cryptography was a new proposed method. 
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Expansion Formula Involving Generalized Hypergeometric Function  
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Govt. I.G. Girls College, Shahdol, (M.P) 
 

Abstract 
 

 In this paper, we present and solve a two dimensional Exponential Bessel 
differential equation, and obtain a particular solution of it involving Fox’s H-
function.  
 

1. Introduction:   
 The object of this paper is to formulate a two dimensional Exponential-
Bessel partial differential equation and obtain its double series solution. We 
further present a particular solution of our Exponential-Bessel equation involving 
Fox’s H-function. It is interesting to note that particular solution also yields a new 
two dimensional series expansion for Fox’s H-function involving exponential 
functions and Bessel functions.      
 H-function of one variable which is introduced by Fox [5, p.408], will be 

represented as follows: 

     

 H        [x|     ] = (1/2i) (s) xs ds     (1.1) 

  
L


where i = (– 1), 

         (bj – js)         (1 – aj + js)  

  (s) =  

               (1 – bj + js)  (aj – js) 
  

x is not equal to zero and an empty product is interpreted as unity; p, q, m, n are 

integers satisfying 1 m  q, 0 n p, j (j = 1, …., p), j (j = 1, …, q) are positive 
numbers and aj (j = 1, …, q) are complex numbers. L is a suitable contour of 

Barnes type such that poles of (bj – js) (j = 1, …, m) lie to the right and poles of 

(1 – aj + js) (j = 1, …, n) to the left of L. These assumptions for the H-function 
will be adhered to through out this paper.  
    According to Braakasma  

     

 H        [x|     ] = O (|x|) for small x,  
            p               q 

where            j – j 0 and = min R(bh/h) (h = 1, .., k)   
           j = 1          j = 1  

16 

m, n  
p, q  

(aj, j)1, p 
(bj, j)1, q 

m 


j = 1  

n 


j = 1  

q 


j = m + 1  

p 


j = n + 1  

m, n  
p, q  

(aj, j)1, p 
(bj, j)1, q 
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and      

 H        [x|     ] = O (|x|) for large x,  
                            
where            n          p                  m             q 

 j – j + j – j A >0,    
           j = 1         j = n + 1        j = 1        j = m + 1 

            p                 q 

            j – j <0  
           j = 1             j = 1  

|arg x| < ½ A and = max R[(aj – 1)/j] (j = 1, .., n) 
 

 The following formulae are required in the proof:  
 

 The integral [2, p.704, (2.2)] (modified form): 
      

cos 2ux (sin x/2)– 2w H        [z (sin x/2) 2h |             ] dx 
         0 

      

H          [z |                   ]   (1.2)          

 

where h > 0, |arg z| < ½ ARe(1 – 2w) – 2h max [Re(aj – 1)/j] > 0. 

         1 j n 

 The integral [7, p. 94, (2.2)] (modified form): 

     

yw´  1 siny J(y) H       [z y2k |        ] dy 
         0 

      

2w´  1
H               [22kz|                           ]  

 
          (1.3)          

where k > 0, |arg z| < ½ ARe(w´ + ) + 2k min [Re bj/j] > 0. 

      1 j n 

 The orthogonal property of the Bessel functions [6, p. 291, (6)]: 

     

x  1 Ja + 2n + 1(x) Ja + 2m + 1(x) dx 
         0   

            0, if m n; 
 =         (1.4) 

            (4n + 2a + 2) – 1, if m = n, Re (a + m + n) >  1.   
 

 The following orthogonal property:  
   0, m n    

e 2 i m x cos 2nx dx =  /2, m = n 0     (1.5) 

         0    , m = n = 0. 
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2. Two Dimensional Exponential – Bessel Partial Differential Equation:  
 

 Let us consider 

  u/t = c u/t2 + y2 

u/y2 + y 

u/y + y2u,  (2.1) 

where u u(x, y, t) and u(x, y, 0) = f(x, y). 
 To solve (2.1), we assume that (2.1) has a solution of the form:  
 
  u(x, y, t) = e              X(ix) Y(y).   (2.2) 

 The substitution of (2.2) into (2.1) yields:  

 c [X´´ + 4r2X] Y + X [y2Y´´ + yY´ + {y2 – ( + 2s + 1)2}Y] = 0  (2.3) 
 We see that X´´ + 4r2X = 0 has a solution X = e2 r i x and  

y2Y´´ + yY´ + {y2 – ( + 2s + 1)2}Y = 0 is Bessel equation [1, p. 200, (6.25)], with 

solution Y = J + 2s + 1(y). Therefore the solution of (2.1) is of the form: 
 

  u(x, y, t) = e              e2 r i x J + 2s + 1(y).  (2.4) 
 

 In view of the principal of superposition, the general solution of (2.1) is 
given by 
         

 u(x, y, t) = Ar, s e                    J + 2s + 1(y). (2.5) 

      r = – s = 0  

  In (2.5), putting t = 0, we get  
    

 f(x, y) = Ar, s e
2 r i x J + 2s + 1(y).    (2.6) 

              r = – s = 0  

 Multiplying both sides of (2.6) by y – 1 cos2ux J + 2w + 1(y), integrating with 

respect to y from 0  to and with respect to x from 0 to , then using (1.4) and 
(1.5), the Fourier Exponential – Bessel coefficients are given by  
             

     Ar, s = (4/) ( + 2s + 1) f(x, y) y – 1 cos2rx J + 2w + 1(y) dy dx  (2.7) 
          0       0 

 In the view of the theory of double and multiple Fourier series given by 
Carslaw and Jaeger [3, pp. 180-183], and many other references, such as Erdelyi 
[4, pp. 64-65] etc., the double series (2.6) is convergent, provided the function 

f(x, y) is defined in the region 0 < x < p, 0 < y < . In brief, the double series (2.6) 
converges, if the double integral on the right hand side of (2.7) exists.   
 In the subsequent section, we take f(x, y) as Fox’s H-function and present 
another method to obtain Fourier exponential – Bessel coefficients Ar, s. 
 

3. Particular Solution Involving Fox’s H-Function:  
 The particular solution to be obtained is 
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                    

  u(x, y, t) = 2w´ + 1
e          ( + 2s + 1) J + 2s + 1(y). 

                r = – s = 0  

      

H                [2 2kz|                         
                    ] 

(3.1)          

valid under the conditions of (1.2), (1.3) and (1.4). 
 

Proof: Let  
      

f(x, y) = (sin x/2)– 2w yw´ siny H        [z (sin x/2) 2h y 2k |       ] dx 
          

       

 = Ar, se
2 r i x J + 2s + 1(y).     (3.2) 

  r = – s = 0  

 Equation (3.2) is valid, since f(x, y) is defined in the region 0 < x < p, 0 < y 

< . 

 Multiplying both sides of (3.2) by y – 1 J + 2w + 1(y) and integrating with 

respect to y from 0 to , then using (1.3) and (1.4). Now multiplying both sides 
of the resulting expression by cos 2ux and integrating with respect to x from 0 to 

, then using (1.2) and (1.5), we obtain the value of Ar, s. Substituting the value of 
Ar, s in (2.5), the expansion (3.1) is obtained.   
 

Note 1: The value of A0, s is one-half the value of Ar, s. 
Note 2: If we put t = 0 in (3.1), it reduces to a new two dimensional series 
expansion for Fox’s H-function involving exponential functions and Bessel 
functions.  
 Since on specializing the parameters Fox’s H-function yields almost all 
special functions appearing in applied mathematics and physical sciences. 
Therefore, the result (3.1) presented in this paper is of a general character and 
hence may encompass several cases of interest.   
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ABSTRACT :  In this paper, we obtain some fixed point theorems using integral 

type inequality in Menger space employing the property (E.A). Our results 

improve and generalize several known fixed point theorems existing in the 

literature. 
 

KEYWORDS : Menger space, Integral Function, Weakly compatible mappings, 

Property (E.A). 
 

MATHEMATICS SUBJECT CLASSIFICATION (2010) : Primary 47H10, 

Secondary 54H25. 
 

INTRODUCTION: In the year 1942 Menger [21] introduced the notion of a 

probabilistic metric space (PM- space) which was, in fact, a generalization of 

metric space. The idea behind this  is to associate a distribution function with a 

pair of points, say (p,q), denoted by Fp,q(t) where t > 0 and interpret this function 

as the probability that distance between p and q is less than t, whereas in the 

metric space, the distance function is a single positive number. Sehgal [37]  

initiated the study of fixed points in probabilistic metric spaces. The study of 

these spaces was expanded rapidly with the pioneering works of Schweizer and 

Sklar [7]. Jungck [13] introduced the notion of compatible mappings and utilized 

the same to improve commutativity conditions in common fixed point theorems. 

This concept has been frequently employed to prove existence theorems on 

common fixed points. However, the study of common fixed points of non-

compatible mappings was initiated by Pant [29]. Recently, Aamri and Moutawakil 

[1] and Liu et al. [34] respectively defined the property (E.A) and the common 

property (E.A) and proved interesting common fixed point theorems in  metric 

spaces. Most recently, Kubiaczyk and Sharma [15] adopted the property (E.A) in 

PM  spaces and used it to prove results on common fixed points. Recently, Imdad 

et al. [26] adopted  the common property (E.A) in PM spaces and proved some 

coincidence and common fixed point  results in Menger spaces. 
 

1. PRELIMINARIES : Before going to our main result we require some more 

definitions and Lemma,  
 

Definition 1.1 [8] :  Let X be a non-empty set and L denote the set of all 

distribution functions. A probabilistic metric space is an ordered pair (X,F) where 

F :X * X→L. we shall denote the distribution function by F (p, q) or F p ,q ; p, q ϵ 

X and F(p, q, x) will represent the value of  F (p, q) at x ϵ R. the function F p, q is 

assumed to satisfy the following conditions :  

1. F p, q (t) = 1, ∀ t > 0 if and if  p = q 
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2. F p, q (0) = 0 for every p, q ϵ X  

3. F p, q (t) = F q, p (t) for every p, q ϵ X  

4. If F p, q (t) = 1 and F q, r (s) = 1 it follows that F q r (t +s) =1 ∀ p, q, r ϵ X 

and t ,s ≥ 0.  

In metric space (X ,d) , the metric d induces a mapping F : X * X→L such 

that F p, q (t) = H(t-d(p, q) ) for all p, q ϵ X and t ϵ R , where H is the distribution 

function defined as  

                  H (x) =  {
          
          

 

Definition 1.2 [8] :A mapping ∆: [0, 1] * [0,1] →[0,1] is called t- norm if the 

following conditions are satisfied  

(1) ∆ (a, 1) = a for all a ϵ [0, 1], ∆ (0,0) = 0,  

(2) ∆ (a ,b) = ∆ (b, a)  

(3) ∆ (c, d) ≤ ∆ (a, b) for c ≥ a, d ≥ b, and  

(4) ∆ (∆ (c, d),c) = ∆ (a,∆ (b, c)) for all a, b, c ϵ [0,1]  

Example 1[8]. The following are the four basic t-norms: 

(i) The minimum t-norm: TM(a, b) = min{a,b}. 

(ii) The product t-norm: TP (a,b) = a.b 

(iii) The Lukasiewicz t-norm: TL(a, b) = max{a + b − 1, 0}. 

(iv) The weakest t-norm, the drastic product: 

TD(a, b) = {
   *   +           *   +   

                             
 

In respect of above mentioned t-norms, we have the following ordering: 

TD < TL < TP < TM. 
 

Definition 1.3 [21]: A Menger probabilistic space is a triplet (X, F, ∆) where (X, 

F) is a PM-space and ∆ is a t- norm with the following condition  

F p, r (t +s) ≥ ∆ (F p, r (t), F p, r (s)) for all p, q, r ϵ X and t, s ≥ 0.  

The above inequality is called Menger’s triangle inequality.  

Definition 1.4 [28] : A sequence {xn} in (X, F, ∆) is said to be a convergent to a 

point x ϵ X if for every ε > 0 and λ > 0, there exists an integer N=N (ε ,λ) such 

that        (ε) →1- λ ∀ n ≥ N (ε ,λ).  

Definition 1.5 [28] : A sequence {xn} in (X, F, ∆) is said to be a Cauchy sequence 

if for every ε > 0 and λ >0 , there exists an integer N=N (ε ,λ) such that   

         (ε) →1- λ ∀ n, m ≥ N (ε ,λ).  

Definition 1.6 [28] : A Menger Space (X, F, ∆) with the continuous t- norm is 

said to be complete if every Cauchy sequence in X converges to a point in X.  

Definition 1.7 [24]:  Let (X, F, ∆) be a Menger PM Space  . A pair (f, g) of self 

mapping on X is said to be weakly commuting if and only if             (t) ≥ 

         (t) for each  x ϵ X and t > 0. 

Definition 1.8 [31]: Let (X, F, ∆) be a Menger PM Space  . A pair (f, g) of self 

mapping on X is said to be compatible if and only if                 (t) →1 for all t > 

0 whenever {xn} in X such that fxn,gxn → z for some z ϵ X as n    .  
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Clearly, a weakly commuting pair is compatible but every compatible pair 

need not be weakly commuting. 

Definition 1.10 [19]: Let (X, F, ∆) be a Menger PM Space  . A pair (f, g) of self 

mapping on X is said to be non–compatible if and only if there exist at least one 

sequence {xn} in X such that 

                          =           =  z,  for some z ϵ X, implies that 

                                              (  ) (for some t0 > 0)  is either  less than 1 or 

non-existent. 

Definition 1.11 [15] : Let (X, F, ∆) be a Menger PM Space  . A pair (f, g) of self 

mapping on X is said to satisfy the property (E.A)  if there exist a sequence {xn} 

in X such that 

                            =           =  z, for some z ϵ X. 

Clearly, a pair of compatible mappings as well as non- Comatible mappings 

satisfies the property (E.A). 

Inspired by Liu et al. [39], Imdad et al. [26] defined the following: 

Definition 1.12 [34]: Two pairs (f, g) and (p, q) of self mappings of a Menger PM 

space (X,F, ) are said to satisfy the common property (E.A) if there exist two 

sequences {xn}, {yn} in X and some t in X such that 

                                   =           =            =           =  z 

Definition1.13. [24] Two finite families of self mappings {Ai} and {Bj} are said 

to be pairwise commuting if: 

(i) AiAj = AjAi,   i, j {1, 2...m}, 

(ii) BiBj = BjBi,   i, j {1, 2...n}, 

(iii) AiBj = BjAi,  i {1, 2...m}, j {1, 2...n}. 

 

2. MAIN RESULT: 

The following lemma is useful for the proof of succeeding theorems. 

Lemma 2.1 [14]:   Let (X, F, Δ) be a Menger space. If there exists some k   (0, 

1) such that for all p, q   X and all x > 0, 

    ∫  ( )  
    (  )

 
  ≥  ∫  ( )  

    ( )

 
                                     -  -  -   (2.1.1) 

 Where   : [0,  )    [0,  ) is a non-negative summable Lebesque integrable 

function such that 

               ∫  ( )    
 

 
  for each     [0,1)  then p = q. 

Proof.  From (2.1.1)   

                      ∫  ( )  
    ( )

 
  ≥  ∫  ( )  

    ( 
   )

 
                                                               

             one can inductively write (for m   N) 

∫  ( )  
    ( )

 
  ≥  ∫  ( )  

    ( 
   )

 
   ≥  -   -   -  ≥  ∫  ( )  

    ( 
   )

 
                                                               

                                                                                     ≥ ∫  ( )  
 

 
   as m      

Therefore 

∫  ( )  
    ( )

 
  - ∫  ( )  

 

 
   ≥  0 
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 And hence, 

 ∫  ( )  
    ( )

 
  (∫  ( )  

    ( )

 
    ∫  ( )  

 

 
) ≥  0 

Or,  

 ∫  ( )  
 

    ( )
  ≤ 0. 

which amounts to say that Fp,q(t) ≥ 1 for all t ≥ 0. Thus, we get  p = q. 

Remark  : By setting φ(t) = 1 (for each t ≥ 0) in (2.1.1) of Lemma 2.1, we have 

 ∫  ( )  
    (  )

 
  =      (  )         ( )   ∫  ( )  

    ( )

 
, 

which shows that Lemma 1 is a generalization of the Lemma 2 (contained in 

[34]). 

In what follows, Δ is a continuous t-norm (in the product topology). 

Lemma 2.2 :   Let (X.F, ∆) be a complete Menger Space and let f, g, p and q be 

self mapping of X  

satisfying the conditions :  

(i)    pairs {p, f} and {q, g} satisfies the property E.A. 

(ii) B(  ) converges for every sequence {  } in X whenever T(  ) 

converges, 

(iii) for any x,y X and for all t > 0, 

              ∫  ( )  
      (  )

 
  ≥ ∫  ( )  

 (   ) 

 
                   -  -  -  (2.2.1) 

 Where   : [0,  )    [0,  ) is a non-negative summable Lebesque integral 

function such that 

               ∫  ( )    
 

 
  for each u  [0,1), where 0 < k < 1 and  

m(x,y)  =      

    *      ( )       ( )       ( )       ( )       ( ) 
       ( )        ( ) 

       ( )
 
       ( )         ( ) 

       ( )
 

          (iv)       p(X)   g(X) ( or q(X)   f(X)). 

Then the pair (p,f) and (q,g) share the common property (E.A.). 

Proof : Suppose that the pair (p,f) enjoys the property (E.A.),then there exist a 

sequence {xn}in X such that 

                                           =            =  u, for some u  X. 

Since  p(X)   g(X), for each xn there exists yn  X.such that     =    , and 

hence 

                                           =            =  u 

Thus in all, we have       ,         and       . Now we assert that  

      . 

To accomplish this, using (2.2.1) with  x = xn and y = yn, we get    

∫  ( )  
        (  )

 
  ≥     ∫  ( )  

 (     ) 

 
  

Where,     (     )   
    *        ( )         ( )          ( )          ( )           ( ) 
         ( )          ( ) 

         ( )
    
         ( )          ( ) 

         ( )
+ 
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Let,           (  ) = v 

Also, let   t  > 0 be such that Fu,v(.) is continuous in t and kt. 

Then, on making n     in the above inequality, we get 

∫  ( )  
    (  )

 
  ≥ 

∫  ( )  
    *    ( )      ( )      ( )      ( )      ( )    

      ( )       ( ) 
      ( )

     
     ( )      ( ) 

     ( )
    

 

 

Or,       ∫  ( )  
    (  )

 
  ≥ ∫  ( )  

    ( )

 
 

This, implies that v = u ( in view of  Lemma 2.1) which shows that the pair 

(p,f) and (q,g) share the common property (E.A).  

Theorem 2.3 : Let f, g, p and q be self mappings of a Menger space (X, F, ∆) 

which satisfy the inequality (2.2.1) together with the conditions : 

(i) the pairs (p, f) and (q, g) share the common property (E.A), 

(ii) f(X) and g(X) are closed subsets of X. 

Then the pairs (p, f) and (q, g) have a point of coincidence each. Moreover, 

f, g, p and q have a unique common fixed point provided both the pairs (p, f) and 

(q, g) are weakly compatible. 

Proof. Since the pairs (p, f) and (q, g) share the common property (E.A), there 

exist two sequences {xn}  

and {yn} in X such that 

          =            =            =            =  u, for some u 

 X. 

         Since f(X) is a closed subset of X, hence            = u  f(X). 

Therefore, there exists a point z  X such that  fz = u.  

Now, we assert that pz = fz.  

To prove this, on using (2.2.1) with x = z, y = yn, we get 

  ∫  ( )  
        

(  )

 
  ≥ 

∫  ( )  
    *       

( )       ( )           
( )          

( )         
( ) 

        
( )          

( ) 

        
( )

  
        

( )         ( ) 

        
( )

  +

 
        

On taking n → ∞,  reduces to 

∫  ( )  
     (  )

 
  ≥ 

                           ∫  ( )  
   {    ( )       ( )      ( )       ( )        ( ) 

      ( )      ( ) 

     ( )
  
     ( )        ( ) 

       ( )
}

 
   

      ∫  ( )  
     (  )

 
  ≥  ∫  ( )  

     ( )

 
  

      Now on appealing Lemma 2.1, we get  pz = u and hence pz = fz. Therefore, z 

is a coincidence point  

      of the pair (p, f). 

      Since g(X) is a closed subset of X, therefore           =  u  g(X)  and 

hence we can find a point  

      w X such that gw = u 

Now we show that qw = gw.  
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To accomplish this, on using (2.2.1) with x = xn, y = w, we have 

∫  ( )  
       (  )

 
  ≥     ∫  ( )  

 (    ) 

 
  

Where,     (    )       *       ( )         ( )        ( )         ( )         ( ) 
        ( )        ( ) 

        ( )
   
        ( )          ( ) 

        ( )
+ 

Which on making n → ∞, reduces to 

∫  ( )  
     (  )

 
  ≥ 

∫  ( )  
    *    ( )         ( )        ( )        ( )      ( )    

     ( )       ( ) 

      ( )
     
     ( )      ( ) 

      ( )
+ 

 

 

               ∫  ( )  
     (  )

 
  ≥  ∫  ( )  

     ( )

 
  

    on employing Lemma 2.1, we get   qw = u and  gw =  qw 

    Therefore, w is a coincidence point of the pair (q, g). 

     Since the pair (p, f) is weakly compatible and  pz = fz, therefore pu = pfz = fpz 

= fu. 

     Again, on using (2.2.1) with x = u, y = w, we have 

              ∫  ( )  
      (  )

 
  ≥ ∫  ( )  

 (   ) 

 
 

Where,     (   )   

    *      ( )       ( )        ( )        ( )       ( ) 
       ( )        ( ) 

       ( )
                   

                                                                                                 
       ( )        ( ) 

       ( )
+ 

Or,  

            ∫  ( )  
     (  )

 
  ≥ 

      ∫  ( )  
    *     ( )          ( )       ( )       ( )       ( )    

      ( )       ( ) 

      ( )
     
      ( )         ( ) 

       ( )
+    

 

 

Or,  

                  ∫  ( )  
     (  )

 
  ≥  ∫  ( )  

     ( )

 
   

     On employing Lemma 2.1, we have pu = fu = u, which shows that u is a 

common fixed point of  

     the pair (p, f). 

    Also the pair (q, g) is weakly compatible and qw = gw, hence 

                qu = qgw = gqw = gu. 

Next, we show that u is a common fixed point of the pair (q, g). In order to 

accomplish this, using (2.2.1) with x = z,  y = u, we get 

       ∫  ( )  
      (  )

 
  ≥ 

∫  ( )  
    *      ( )          ( )        ( )        ( )        ( )    

       ( )        ( ) 

       ( )
     
       ( )         ( ) 

       ( )
+ 

 

 

Or, 

      ∫  ( )  
     (  )

 
  ≥  
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∫  ( )  
    *     ( )         ( )        ( )        ( )       ( )    

      ( )        ( ) 

      ( )
     
      ( )       ( ) 

      ( )
+ 

 

 

Or, 

      ∫  ( )  
     (  )

 
  ≥  ∫  ( )  

     ( )

 
   

Using Lemma 2.1, we have qu = u which shows that u is a common fixed point of 

the pair (q, g). Hence 

 u is a common fixed point of both the pairs (p, f) and (q, g). Uniqueness of 

common fixed point is an  

easy consequence of the inequality (2.2.1). This completes the proof.  
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