Brijesh lyer Debashis Ghosh Valentina Emilia Balas *Editors*

Applied Information Processing Systems

Proceedings of ICCET 2021

Advances in Intelligent Systems and Computing

Volume 1354

Series Editor

Janusz Kacprzyk, Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

Advisory Editors

Nikhil R. Pal, Indian Statistical Institute, Kolkata, India

Rafael Bello Perez, Faculty of Mathematics, Physics and Computing, Universidad Central de Las Villas, Santa Clara, Cuba

Emilio S. Corchado, University of Salamanca, Salamanca, Spain

Hani Hagras, School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK

László T. Kóczy, Department of Automation, Széchenyi István University, Gyor, Hungary

Vladik Kreinovich, Department of Computer Science, University of Texas at El Paso, El Paso, TX, USA

Chin-Teng Lin, Department of Electrical Engineering, National Chiao Tung University, Hsinchu, Taiwan

Jie Lu, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia

Patricia Melin, Graduate Program of Computer Science, Tijuana Institute of Technology, Tijuana, Mexico

Nadia Nedjah, Department of Electronics Engineering, University of Rio de Janeiro, Rio de Janeiro, Brazil

Ngoc Thanh Nguyen, Faculty of Computer Science and Management, Wrocław University of Technology, Wrocław, Poland

Jun Wang, Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong The series "Advances in Intelligent Systems and Computing" contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing such as: computational intelligence, soft computing including neural networks, fuzzy systems, evolutionary computing and the fusion of these paradigms, social intelligence, ambient intelligence, computational neuroscience, artificial life, virtual worlds and society, cognitive science and systems, Perception and Vision, DNA and immune based systems, self-organizing and adaptive systems, e-Learning and teaching, human-centered and human-centric computing, recommender systems, intelligent control, robotics and mechatronics including human-machine teaming, knowledge-based paradigms, learning paradigms, machine ethics, intelligent data analysis, knowledge management, intelligent agents, intelligent decision making and support, intelligent network security, trust management, interactive entertainment, Web intelligence and multimedia.

The publications within "Advances in Intelligent Systems and Computing" are primarily proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

Indexed by DBLP, INSPEC, WTI Frankfurt eG, zbMATH, Japanese Science and Technology Agency (JST).

All books published in the series are submitted for consideration in Web of Science.

More information about this series at http://www.springer.com/series/11156

Brijesh Iyer · Debashis Ghosh · Valentina Emilia Balas Editors

Applied Information Processing Systems

Proceedings of ICCET 2021

Editors
Brijesh Iyer
Department of Electronics
and Telecommunications Engineering
Dr. Babasaheb Ambedkar Technological
University
Lonere, India

Valentina Emilia Balas Department of Automatics and Applied Software Aurel Vlaicu University of Arad Arad, Romania Debashis Ghosh Department of Electronics and Computer Engineering Indian Institute of Technology Roorkee Roorkee, Uttarakhand, India

ISSN 2194-5357 ISSN 2194-5365 (electronic)
Advances in Intelligent Systems and Computing
ISBN 978-981-16-2007-2 ISBN 978-981-16-2008-9 (eBook)
https://doi.org/10.1007/978-981-16-2008-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

Preface

Dr. Babasaheb Ambedkar Technological University, Lonere-402103, is a State Technological University of the Maharashtra State in India. Over the years, the Department of Electronics and Telecommunication Engineering of this University has been organizing faculty and staff development and continuing education programs.

In 2013, the department took a new initiative to organize international conferences in the frontier areas of eEngineering and computing technologies. The ICCET series (earlier ICCASP) is an outcome of this initiative. The 6th ICCET 2021 has been organized by the department of E&TC Engineering of the University. The event was conducted in ONLINE mode due to ongoing pandemic situations all over the globe. Keynote lectures, invited talks by eminent professors, and panel discussions of the delegates with the academicians and industry personnel are the key features of the 6th ICCET 2021.

This volume aims to collect scholarly articles in the area of Applied Information systems which will be helpful to cater to the needs of next millennium communications systems. We have received a great response regarding the quantity and quality of individual research contributions for consideration. The conference had adopted a "Single Blind Peer Review" process to select the papers with a strict plagiarism verification policy. Hence, the selected papers are the true record of research work for the theme of this volume.

We are thankful to the reviewers, session chairs, and rapporteurs for their support. We also thank the authors and the delegates for their contributions and presence. Finally, we are incredibly grateful to University officials for their support for this activity.

We are pledged to take this conference series to greater heights in the years to come to put forward the need-based research and innovation.

Thank you one and all.

Lonere, India Roorkee, India Arad, Romania Dr. Brijesh Iyer Dr. Debashis Ghosh Dr. Valentina Emilia Balas

Contents

CNN Parameter Adjustment for Brain Tumor Classification	1
Advance Fuzzy Radial Basis Function Neural Network Balaji S. Shetty, Manisha S. Mahindrakar, and U. V. Kulkarni	11
Unbounded Fuzzy Radial Basis Function Neural Network Classifier	25
A Study on the Adaptability of Deep Learning-Based Polar-Coded NOMA in Ultra-Reliable Low-Latency Communications N. Iswarya, R. Venkateswari, and N. Madhusudanan	39
Heart Rate Variability-Based Mental Stress Detection Using Deep Learning Approach Ramyashri B. Ramteke and Vijaya R. Thool	51
Product-Based Market Analysis Using Deep Learning Aayush Kumaria, Nilima Kulkarni, and Abhishek Jagtap	63
Driver Drowsiness Detection Using Deep Learning	73
Emotion Detection from Social Media Using Machine Learning Fechniques: A Survey Vijaya Ahire and Swati Borse	83
Deep Age Estimation Using Sclera Images in Multiple Environment	93
Data Handling Approach for Machine Learning in Wireless Communication: A Survey Niranjan S. Kulkarni, Sanjay L. Nalbalwar, and Anil B. Nandgaonkar	103
Breast Cancer Detection in Mammograms Using Deep Learning Abhiram Pillai, Amaan Nizam, Minita Joshee, Anne Pinto, and Satishkumar Chavan	121

viii Contents

Deep Learning-Based Parameterized Framework to Investigate the Influence of Pedagogical Innovations in Engineering Courses M. Ashok, Kumar Ramasamy, Umadevi Ashok, and Revathy Pandian	129
Modern Transfer Learning-Based Preliminary Diagnosis of COVID-19 Using Forced Cough Recordings with Mel-Frequency Cepstral Coefficients Shariva Dhekane, Vaishnavi Agrawal, Aniruddha Datta, and Kunal Kulkarni	137
Biomedical Text Summarization: A Graph-Based Ranking Approach Supriya Gupta, Aakanksha Sharaff, and Naresh Kumar Nagwani	147
EEG-Based Diagnosis of Alzheimer's Disease Using Kolmogorov Complexity Digambar Puri, Sanjay Nalbalwar, Anil Nandgaonkar, and Abhay Wagh	157
Quantification of Streaking Effect Using Percentage Streak Area Sajjad Ahmed and Saiful Islam	167
Improving Topographic Features of DEM Using Cartosat-1 Stereo Data Litesh Bopche and Priti P. Rege	177
Active Noise Cancellation System in Automobile Cabins Using an Optimized Adaptive Step-Size FxLMS Algorithm Arinjay Bisht and Hemprasad Yashwant Patil	187
FFT-Based Robust Video Steganography over Non-dynamic Region in Compressed Domain Rachna Patel, Kalpesh Lad, and Mukesh Patel	201
An Improved Approach for Devanagari Handwritten Characters Recognition System Rajdeep Singh, Arvind Kumar Shukla, Rahul Kumar Mishra, and S. S. Bedi	217
PSO-WT-Based Regression Model for Time Series Forecasting P. Syamala Rao, G. Parthasaradhi Varma, and Ch. Durga Prasad	227
Leaf Diagnosis Using Transfer Learning Prashant Udawant and Pravin Srinath	235
Attendance System Using Face Recognition Library	247
Studies on Performance of Image Splicing Techniques Using Learned Self-Consistency Bhukya Krishna Priya, Anup Das, Shameedha Begum, and N. Ramasubramanian	255

Contents ix

Random Forest and Gabor Filter Bank Based Segmentation Approach for Infant Brain MRI Vinodkumar R. Patil and Tushar H. Jaware	265
Sensory-Motor Cortex Signal Classification for Rehabilitation Using EEG Signal Vinay Kulkarni, Yashwant Joshi, and Ramchandra Manthalkar	273
D-CNN and Image Processing Based Approach for Diabetic Retinopathy Classification Armaan Khan, Nilima Kulkarni, Ankit Kumar, and Anirudh Kamat	283
Pothole Detection Using YOLOv2 Object Detection Network and Convolutional Neural Network R. Sumalatha, R. Varaprasada Rao, and S. M. Renuka Devi	293
A New Machine Learning Approach for Malware Classification	301
Analysis of Feature Selection Techniques to Detect DoS Attacks Using Rule-Based Classifiers Atharva Vaidya and Deepak Kshirsagar	311
Botnet Detection Using Bayes Classifier Prapti Kolpe and Deepak Kshirsagar	321
Insider Attack Prevention using Multifactor Authentication Protocols - A Survey Siranjeevi Rajamanickam, N. Ramasubramanian, and Satyanarayana Vollala	331
Link Scheduling in Wireless Mesh Network Using Ant Colony Optimization Makarand D. Wangikar and Balaji R. Bombade	341
Development of an Integrated Security Model for Wireless Body Area Networks K. R. Siva Bharathi and R. Venkateswari	351
An Improved Node Mobility Patten in Wireless Ad Hoc Network Manish Ranjan Pandey, Rahul Kumar Mishra, and Arvind Kumar Shukla	361
IGAN: Intrusion Detection Using Anomaly-Based Generative Adversarial Network Jui Shah and Maniklal Das	371
CodeScan: A Supervised Machine Learning Approach to Open Source Code Bot Detection Vipul Gauray, Shresth Singh, Avikant Srivastava, and Sushila Shidnal	381

x Contents

Green Internet of Things: The Next Generation Energy Efficient Internet of Things Navod Neranjan Thilakarathne, Mohan Krishna Kagita, and W. D. Madhuka Priyashan	391
<i>iGarbage</i> : IoT-Based Smart Garbage Collection System Zofia Noorain, Mohd. Javed Ansari, Mohd. Shahnawaz Khan, Tauseef Ahmad, and Md. Asraful Haque	403
IoT-Based Smart Home Surveillance System Shruti Dash and Pallavi Choudekar	417
Optimized Neural Network for Big Data Classification Using MapReduce Approach Sridhar Gujjeti and Suresh Pabboju	429
Impact of Deployment Schemes on Localization Techniques in Wireless Sensor Networks Pratee k, Aakansha Garg, and Rajeev Arya	439
A Survey on 5G Architecture and Security Scopes in SDN and NFV Jehan Hasneen and Kazi Masum Sadique	447
Study and Analysis of Hierarchical Routing Protocols in Wireless Sensor Networks Ankur Choudhary, Santosh Kumar, and Harshal Sharma	461
Circularly Polarized 1 × 4 Antenna Array with Improved Isolation for Massive MIMO Base Station Ravindra S. Bakale, Anil B. Nandgaonkar, S. B. Deosarkar, and R. Bhadade	475
Analysis of Rectangular Microstrip Array Antenna Fed Through Microstrip Lines with Change in Width Tarun Kumar Kanade, Alok Rastogi, Sunil Mishra, and Vijay D. Chaudhari	487
Parametric Study of Electromagnetic Coupled MSA Array for PAN Devices with RF Survey Shilpa Nandedkar, Shankar Nawale, and Anirudha Kulkarni	497
Fractal Tree Microstrip Antenna Using Aperture Coupled Ground Sanjay Khobragade, Sanjay Nalbalwar, and Anil Nandgaonkar	507
Wind Speed at Hub Height (Using Dynamic Wind Shear) and Wind Power Prediction Rohit Kumbhare, Suraj Sawant, Sanand Sule, and Amit Joshi	519
Modeling and Simulation of Microgrid with P-Q Control of Grid-Connected Inverter Nasir Ul Islam Wani Anunama Prakash and Pallavi Choudekar	529

Contents		xi

Smart Student Assessment System for Online Classes Participation Sudheer Kumar Nagothu	541
Recommendation System for Location-Based Services Ritigya Gupta, Ishani Pandey, Kritika Mishra, and K. R. Seeja	553
Optimal and Higher Order Sliding Mode Control for Systems with Disturbance Rejection Ishwar S. Jadhav and Gajanan M. Malwatkar	563
Synchronization and Secure Communication of Chaotic Systems Ajit K. Singh	575
Improvement in Ranking Relevancy of Retrieved Results from Google Search Using Feature Score Computation Algorithm Swati Borse and B. V. Pawar	585
Author Index	599

Analysis of Rectangular Microstrip Array Antenna Fed Through Microstrip Lines with Change in Width

487

Tarun Kumar Kanade, Alok Rastogi, Sunil Mishra, and Vijay D. Chaudhari

Abstract This paper deals with a detailed investigation of a microstrip array antenna with step discontinuities at its feed line has been presented. In the proposed configuration, antenna arrays at 2.45 GHz are designed, simulated, and fabricated to demonstrate the concept of step discontinuities in the feed lines. A four-element rectangular patch array is fully characterized, and its performance is critically assessed for no step, single step, and double step microstrip feed lines. The return loss S_{11} [dB] is better for microstrip array antennas with double step feed lines than array antennas with no step and single step feed lines. Impedance matching and higher isolation between the patches and feed lines were appropriate using step discontinuities at the feed lines. FR4 substrates were used to design, simulate, and fabricate the microstrip array antennas. The simulated S_{11} [dB] for no-step feed lines, single-step feed lines, and double-step feed lines for rectangular microstrip array antennas are -8.78 dB, -16.48 dB, and -17.15 dB, respectively. Prototypes of these antennas are then fabricated and measured to validate the analysis and design experimentally. The simulated and measured results agree with each other.

Keywords Rectangular patch · Array · 2.45 GHz · Microstrip feed lines · Dual-polarized antenna · Narrowband antenna

T. K. Kanade (⋈)

Assistant Professor, Department of Science, The Bhopal School of Social Science, Bhopal, MP, India

A. Rastogi · S. Mishra

Professor, Department of Physics & Electronics, Institute for Excellence in Higher Education, Bhopal, MP, India

e-mail: akrastogi_bpl@yahoo.co

V. D. Chaudhari

Assistant Professor, E & TC Engineering Department, G.F.'s Godavari College of Engineering, Jalgaon, MS, India

1 Introduction

Printed Antennas are the promising candidates for microwave and millimeterwave communications, where the dimensions of the antenna should be kept to a minimum. In the twenty-first century, planar antennas have found their applications in cellular communication systems, digital communication systems, wireless LAN, and personal communication systems. In modern wireless devices, the microstrip patch antennas have been progressively demanded because of smart performance, low-profile, lightweight, ease to construct, and conformability in the microwave and millimeter-wave circuits. Microstrip antenna has some limitations like narrow bandwidth and somewhat lower gain. Microstrip antenna consists of three parts: metal layer or patch, dielectric substrate and ground metal layer, and a substrate are sandwiched between the metal layer and ground metal layer. Together the single patch antenna and an array of microstrip patch antenna have their benefits in respective domains. Microstrip array antenna consists of microstrip patch antenna elements, interconnected and fed using microstrip transmission lines. Array configurations are extensively used in microwave and millimeter-wave communication systems where a narrow beam is required. The commonly used feeding techniques in microstrip array antennas are parallel or series feeding. In a parallel feed network, all the patches are coupled by single transmission lines, while in a series feed network, the radiating elements are organized in a line and connected to a planar transmission line. The feed networks are to be designed carefully to curtail any adverse effects on array performance. As the feed line itself radiates, the feed line's proper optimization must get the appropriate return loss, gain, and directivity [1-4]. Section 2 describes the antenna array design and fabrications, followed by Sect. 3, which deals with simulation and measurement results. Conclusions are drawn in the last Sect. 4.

2 Antenna Array Design

The design and fabrication of various microstrip patch antennas require empirical formulas and the parameters like dielectric constant and height of the substrate material (ϵ r), requiring frequency (f_r). The microstrip patch antenna's width and length are determined by the empirical formulae [3–7]. The single element microstrip patch antenna is designed for fixed frequency and gain, and the radiation pattern is relatively wide with a low directivity or gain. It is essential to design antennas with specific directive features or large gain to meet long-distance communications in various applications. The directivity and gain may be increased by increasing the antenna's electrical size, but the size increase also doesn't fulfill the desired requirements. Another technique to increase the antenna's dimensions without increasing the individual patch elements' size is to form an assembly of radiating patch elements in an electrical and structural configuration. Thus, the array antenna is formed by merging more than one patch element [8–10].

In the microwave and millimeter-wave circuit design, a straight, uninterrupted or continuous transmission structure are of little use, and in any case, junctions or discontinuities are a must. All practical microwave and millimeter-wave propagation structures must inherently contain discontinuities. The commonly occurs discontinuities in the transmission lines are bends, open circuits, change in width, and transitions in the planar transmission lines. Discontinuities also play a significant role in the feeding structure of a single patch microstrip antenna or an array of microstrip antennas. At discontinuities or junctions, electric field and magnetic field altered, altered electric field distribution is liable for the change in capacitance, and altered magnetic field distribution is responsible for the inductance change. The analysis of microstrip discontinuities for the estimate of inductance and capacitance is carried out by quasi-static analysis, and scattering parameters are studied through full-wave analysis [11, 12].

A microstrip array antenna with step discontinuities shows a better performance in terms of return loss, gain, or directivity than a microstrip antenna with uninterrupted feed lines. In this paper, microstrip array antennas are investigated, with the straight feed line, single-step feed line, and double-step feed lines. In all three cases, the microstrip array antennas are designed, simulated, and fabricated to study and compare the performance based on feed lines [13, 14]. Using design formulations structure of microstrip array antennas with various feed lines is shown in Figs. 1, 2, and 3.

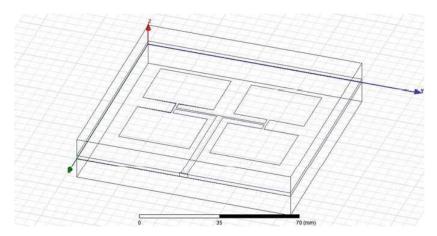


Fig. 1 Structure of rectangular microstrip patch array with no-step feed line

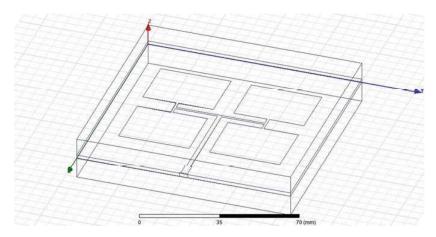


Fig. 2 Structure of rectangular microstrip patch array with a single-step feed line

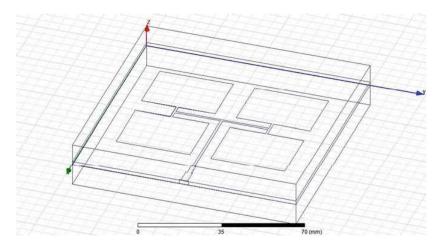


Fig. 3 Structure of rectangular microstrip patch array with a double-step feed line

3 Simulation and Measurement Results

Printed Antennas are the favorable candidates for microwave and millimeter-wave communications, where the dimensions of the antenna should be kept to a minimum. The microstrip patch array antenna is designed and simulated using FEM-based HFSS software and fabricated on FR4 substrate. The fabricated microstrip patch array antennas with three different feed lines are shown in Figs. 4, 5, and 6. The resulting parameters, like return loss, VSWR, and radiation patterns, were analyzed. Figures 7, 8, and 9 presents the simulated reflection coefficient versus frequency. The

Fig. 4 Fabricated PCB of the rectangular microstrip patch array—no-step feed line

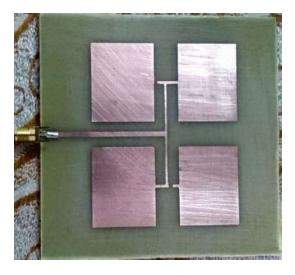
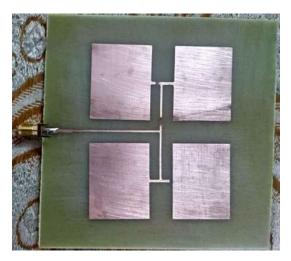



Fig. 5 Fabricated PCB of the rectangular microstrip patch array—single-step feed line

graphical analysis shows that S_{11} [dB] is enhanced for a microstrip array antenna with a double-step feed line compared to an array antenna with single-step and no-step feed lines. For an array of microstrip patch antennas, the simulated S_{11} [dB] is 8.79 dB at 2.45 GHz for no step feed line, 16.48 dB at 2.55 GHz for single-step feed line, and 17.15 dB at 2.45 GHz for double step feed line.

The measured reflection coefficients versus frequency for the three different microstrip patch arrays with no-step, single-step, and double-step feed lines are shown in Figs. 10, 11, and 12, respectively. The measured S_{11} [dB] for a microstrip

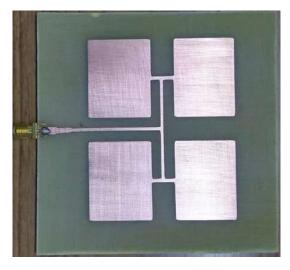


Fig. 6 Fabricated PCB of the rectangular microstrip patch array—double-step feed line

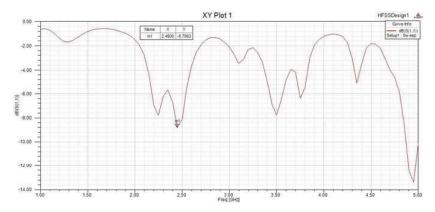


Fig. 7 S_{11} [dB] of the rectangular microstrip patch array—no-step feed line

patch array with no-step feed line is $-12.756\,\mathrm{dB}$ at 2.51 GHz, with a single-step feed line is $-15.199\,\mathrm{dB}$ at 2.52 GHz, and with double-step the feed line is $-15.207\,\mathrm{dB}$ at 2.48 GHz. The S_{11} [dB] for a microstrip patch array with a double-step feed line is resonant at a frequency of 2.48 GHz, near the required frequency. The simulated and measured results nearly agree with each other—the variance between the simulated and measured results to the extent of 2.0 dB. A slight deviation is also observed between the measured and simulated operating frequencies due to the inaccuracies in the fabrication process and measurement errors. Table 1 shows our implemented array patch with the earlier implemented single patch [14].

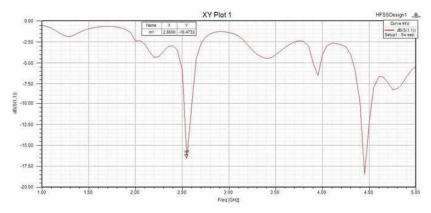
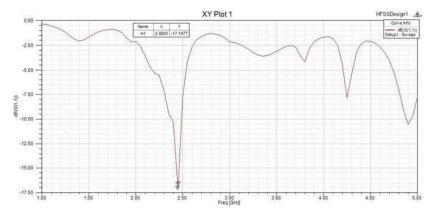
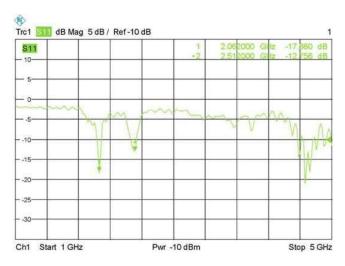
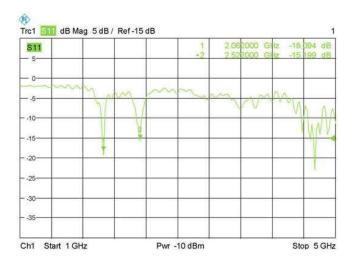




Fig. 8 S_{11} [dB] of the rectangular microstrip patch array—single-step feed line



 $\textbf{Fig. 9} \quad S_{11} \ [dB] \ of \ the \ rectangular \ microstrip \ patch \ array \\ -- double-step \ feed \ line$

Recently, concurrent multiband systems have become very popular [15–20]. The proposed prototype of antenna design can be extended in this direction. This approach will reduce the prototype's dimensions and support the multiple operation bands simultaneously with significantly less power requirements.

 $\textbf{Fig. 10} \quad \text{Measured S_{11} [dB] of the rectangular microstrip patch array} \\ -\text{no-step feed line}$

 $\textbf{Fig. 11} \quad \text{Measured } S_{11} \; [dB] \; \text{of the rectangular microstrip patch array} \\ -\text{single-step feed line}$

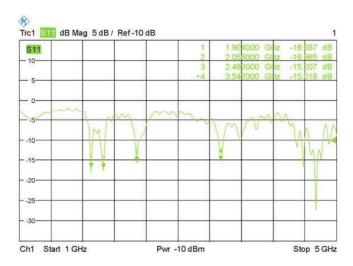


Fig. 12 Measured S₁₁ [dB] of the rectangular microstrip patch array—double-step feed line

Table 1 Comparisons of single patch and array patch simulated and experimental results at 2.45 GHz

	No-step feed		Single-step feed		Double-step feed	
	Single patch [dB]	Array patch [dB]	Single patch [dB]	Array patch [dB]	Single patch [dB]	Array patch [dB]
Simulation	-11.91	-8.79	-14.32	-16.47	-15.91	-17.15
Experimental	-11.77	-12.76	-10.44	-15.20	-19.96	-15.21

4 Conclusions

In this paper, four-element microstrip patch array antennas with three different feed lines have been presented for wireless devices operating at 2.45 GHz. A new strategy was proposed and analyzed by simulations, fabrications, and measurements to investigate the role of step discontinuities in a feed line. The simulation and the measured result for the microstrip patch array antennas reveal that the array antenna with double-step feed lines result in better performance than a single-step and no-step feed line array antennas.

References

 Lamminen, A., Säily, J., Ala-Laurinaho, J., de Cos, J., Ermolov, V.: Patch antenna and antenna array on multilayer high-frequency PCB for D-band. IEEE Open J. Ant. Propagat. 1, 396–403 (2020)

- Wang, L., En, Y.-F.: A wideband circularly polarized microstrip antenna with multiple modes. IEEE Open J. Ant. Propagat. 1, 413–418 (2020)
- 3. Balanis, C.A.: Antenna Theory: Analysis and Design, 3rd edn. Wiley, New York (1997)
- 4. Waterhouse, R.B.: Microstrip Patch Antennas: A Designer's Guide, 1st edn. Springer Science + Business Media, New York (2003)
- Abohmra, A., Abbas, H., Al-Hasan, M., Mabrouk, I.B., Alomainy, A., Imran, M.A., Abbasi, Q.H.: Terahertz antenna array based on a hybrid perovskite structure. IEEE Open J. Ant. Propagat. 1, 464–471 (2020)
- Chiu, C.-Y., Lau, B.K., Murch, R.: Bandwidth enhancement technique for broadside tri-modal patch antenna. IEEE Open J. Ant. Propagat. 1, 524–533 (2020)
- Gupta, C., Gopinath, A.: Equivalent circuit capacitance of microstrip step change in width. IEEE Trans. Microwave Theory Tech. MTT-25, 819–822 (1977)
- 8. Easter, B.: The equivalent circuit of some microstrip discontinuities. IEEE Trans. Microwave Theory Tech. MTT-23, 655–660 (1975)
- Horton, R.: Equivalent representation of an abrupt impedance step in microstrip line. IEEE Trans. Microwave Theory Tech. MTT-21, 562–564 (1973)
- Thompson, F., Gopinath, A.: Calculation of microstrip discontinuity inductances. IEEE Trans. Microwave Theory Tech. MTT-23, 648–655 (1975)
- 11. Krage, M.K., Haddad, G.I.: Frequency dependent characteristics of microstrip transmission lines. IEEE Trans. Microwave Theory Tech. MTT-20, 678–688 (1975)
- Raicu, D.: Universal taper for compensation of step discontinuities in microstrip lines. IEEE Microwave Guided Lett. 1, 249–251 (1991)
- Koster, N.H.L., Jansen, R.H.: The microstrip step discontinuity: a revised description. IEEE Trans. Microwave Theory Tech. MTT-34, 213–223 (1986)
- Kanade, T.K., Rastogi, A.K., Mishra, S.: Design simulation and experimental investigations of microstrip patch antennas and its feed line. Int. J. Eng. Res. Technol. 4, 25–28 (2015)
- Iyer, B., Pathak, N.P., Ghosh, D.: Dual-input dual-output RF sensor for indoor human occupancy and position monitoring. IEEE Sens. J. 15(7), 3959–3966 (2015). https://doi.org/10.1109/JSEN.2015.2404437
- Iyer, B., Pathak, N.P., Ghosh, D.: Concurrent dualband patch antenna array for non-invasive human vital sign detection application. In: 2014 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE), Johor Bahru, 2014, pp. 150–153. https://doi.org/10.1109/APACE. 2014.7043765
- Iyer, B., Pathak, N.P., Ghosh, D.: Reconfigurable multiband concurrent R.F. system for non-invasive human vital sign detection. In: 2014 IEEE Region 10 Humanitarian Technology Conference (R10 HTC), Chennai, 2014, pp. 111–116. https://doi.org/10.1109/R10-HTC.2014. 7026309
- Rathod, B., Iyer, B.: Concurrent triband filtenna design for WLAN and WiMAX applications. In: Hitendra Sarma, T., Sankar, V., Shaik, R. (eds.) Emerging Trends in Electrical, Communications, and Information Technologies. Lecture Notes in Electrical Engineering, vol. 569, pp. 775–784 (2020). https://doi.org/10.1007/978-981-13-8942-9_66
- Iyer, B.: Characterisation of concurrent multiband RF transceiver for WLAN applications. Adv. Intell. Syst. Res. 834–846 (2016). https://doi.org/10.2991/iccasp-16.2017.112
- Iyer, B., Garg, M., Pathak, N., Ghosh, D.: Contactless detection and analysis of human vital signs using concurrent dual-band R.F. system. Procedia Eng. 64, 185–194 (2013)