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Abstract 

Data-driven approaches using AI, ML, and blockchain have revolutionized biotechnology and genomics. 

The present paper delves into the exciting possibilities that arise from the intersection of AI, ML, and 

blockchain technology with genomics, healthcare, and biotechnology. The use of these advanced 

technologies allows for the creation of radical applications that leverage machine learning, Big Data 

analytics, natural language processing, decision support, and reasoning under uncertainty. Such applications 

provide unprecedented avenues for improving human health and well-being. 

By assimilating AI with biotechnology, researchers can develop cutting-edge applications that enable 

genomic sharing, next-generation sequencing, gene editing, clinical workflow optimization, risk prediction, 

diagnosis, and precision medicine. The potential applications of AI, ML, and blockchain in these areas are 

truly transformative, and have the power to revolutionize the future of healthcare. The survey showcases the 

significant impact of these technologies in improving patient outcomes, reducing costs, and increasing the 

efficiency of healthcare delivery. With the help of AI, ML, and blockchain, one can realize a future where 

healthcare is more personalized, effective, and accessible to everyone. 

Keywords: Artificial Intelligence, Biotechnology, Blockchain, Deep Learning, Digital Transformation, 

Machine Learning. 

Introduction 

Big data has become an essential aspect of modern society, with its significance spread across 

various industries and fields. In 2001, Gartner introduced the 3Vs of data: Volume, Velocity, and 

Variety. Since then, the field of data analytics has expanded on this concept by adding two more 

Vs - Value and Veracity. Here, volume refers to the massive amount of data, which is often 

complex and heterogeneous. Traditional database technology cannot handle this volume of data, 

leading to the need for advanced analytics to extract insights. Velocity refers to the speed at which 

new data is generated and moves around. Variety refers to the different types of structured, semi-

structured, and unstructured data available, such as social media conversations and voice 

recordings. Veracity refers to the certainty, accuracy, relevance, and predictive value of the data, 

while value refers to the conversion of data into business insights. 

The genomics and healthcare industry is one of the sectors that have been impacted significantly 

by big data and artificial intelligence (AI). Big data analytics and AI have become omnipresent 

across the entire healthcare spectrum, including payers, providers, policy-makers/ government, 
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patients, and product manufacturers. Healthcare fraud and abuse account for up to 10% of global 

healthcare expenditure, and AI-based tools can help mitigate this problem in payer programs 

[Joudaki, et al., 2015]. Medical coding errors and incorrect claims also account for substantial 

losses, and the reliable identification of these errors can save payers, providers, and governments 

significant amounts of money and time [Davenport and Kalakota, 2019]. 

AI is also used for evidence-based clinical decision support, detection of adverse events, and 

predicting patients at risk for readmission. Healthcare policymakers and government can use AI-

based tools to control and predict infections and outbreaks. 

With the advent of the global pandemic coronavirus disease 2019 (COVID‐ 19) in early 2020, AI 

models could be used to predict at-risk populations and provide additional risk information to 

clinicians caring for at-risk patients [Vaishya et al., 2020]. The big data analytics for patients and 

biotechnology/ healthcare products is a crucial aspect of healthcare and the future of healthcare 

will depend significantly on these technologies - AI, ML and Blockchain to provide efficient and 

effective care to patients. 

Artificial Intelligence Vs Machine Learning 

Artificial Intelligence (AI) and Machine Learning (ML) are two terms that are often used 

interchangeably, but they represent different concepts. AI refers to the broad vision of generating 

computers and software that can perform tasks that require human intelligence. On the other hand, 

ML is a subfield of AI that involves training computers to perform tasks without explicit 

instructions using patterns and insights from data. Deep Learning (DL) is a subset of ML that uses 

artificial neural networks with many layers to learn and make decisions. It is particularly useful for 

tasks that involve analyzing large amounts of data [Garg, 2023a]. 

The AI field was initiated in 1956 when a group of computer scientists met at Dartmouth College 

in Hanover, New Hampshire. The group had ambitious goals to create machines that could 

simulate every aspect of human intelligence. Since then, AI has gone through many ups and 

downs, including an AI winter in the 1980s. However, the rise of statistical data-driven ML helped 

to revive the field of AI. Today, AI is experiencing a resurgence, and the latest natural language 

technology developed by OpenAI, called ChatGPT, is proof of what AI can do. 

There are three major classes of ML: supervised learning, unsupervised learning, and 

reinforcement learning. Supervised learning aims to predict a classification or label of data points 

using a given set of labeled training examples. In contrast, unsupervised learning aims to learn 

inherent patterns within the data. Reinforcement learning is based on rewarding desired behavior 

and punishing undesired behavior of software agents. 

DL models are more flexible than standard ML methods and can model more complex 

relationships between inputs and outputs [LeCun et.al, 2015; Zou et.al, 2019]. Different types of 

neural networks have been developed for specific tasks such as convolutional neural networks, 

which capture spatial dependencies, and recurrent neuronal networks, which handle sequential or 

time-series data. 

Thus, AI aims to provide the theoretical fundamentals for ML to develop software that can learn 

autonomously from previous experience.  To reach a level of usable intelligence, we need to learn  
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from prior data, extract knowledge, generalize, fight the curse of dimensionality, and disentangle 

the underlying explanatory factors of the data. The grand goal is to create software that can learn 

automatically without human intervention. 

AI in Genomics and Healthcare 

Artificial Intelligence (AI) has revolutionized many domains, and healthcare is no exception. It 

involves the use of technology to create software that mimics human-like critical thinking 

[Ramesh et al., 2004]. AI uses techniques such as fuzzy expert systems and artificial neural 

networks [Hessler and Baringhaus, 2018; Mintz and Brodie, 2019] to provide personalized 

experiences where predictions are backed by mathematical data points. The field of AI in 

healthcare can be divided into two subunits, virtual and physical. The virtual aspect of AI involves 

electronic healthcare records [Esteva et al., 2019] and neural networks guiding patient treatments 

[McDonnell et al., 2021], while the physical aspect involves robots assisting in surgeries and AI-

generated prosthetics for the disabled. 

Over the past decade, AI has seen remarkable growth and acceptance in genomics and 

biotechnology. It provides rich opportunities for designing intelligent products, creating novel 

services, and generating new business models. The use of AI in medicine can introduce social and 

ethical challenges to security, privacy, and human rights. 

AI technologies in medicine exist in many forms, from the purely virtual to cyber-physical. AI 

technologies have enabled many image-based detection and diagnostic systems in healthcare to 

perform as well or better than clinicians. AI-enabled clinical decision-support systems may reduce 

diagnostic errors, augment intelligence to support decision making, and assist clinicians with EHR 

data extraction and documentation tasks. 

Emerging computational improvements in natural language processing, pattern identification, 

efficient search, prediction, and bias-free reasoning will lead to further capabilities in AI that 

address currently intractable problems [Biamonte et al., 2017]. However, the advances in the 

computational capability of AI have prompted concerns that AI technologies will eventually 

replace physicians. 

Therefore, the term augmented intelligence [Ashby, 1957] may be a more apt description of the 

future interplay among data, computation, and healthcare providers, and perhaps a better definition 

for the abbreviation AI in healthcare.  

Insights into the Blueprint of Life 

The human genome is the foundation for the expression of human traits, consisting of unique 

biological DNA that makes each individual distinct. The advent of genomics has revolutionized 

the field of molecular biology, enabling scientists to map the structure and function of genomes. 

Each human genome contains 20,000 to 25,000 genes, with every gene comprising a few hundred 

to 2 million DNA bases [International Human Genome Sequencing Consortium, 2001]. The 

mapping of the human genome in 2003 opened up numerous possibilities for using genomics in 

the medical field. 
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Gene expression occurs through transcription and translation, with RNA splicing in between, 

resulting in diversity in protein coding. However, errors in splicing or mutations can cause a range 

of diseases [Fletcher et al., 2013]. While protein-coding DNA accounts for only a small percentage 

of the genome, a significant portion is transcribed into non-protein-coding RNAs (ncRNAs) that 

regulate gene expression and transcription initiation and termination [Mattick and Makunin, 2006]. 

Genomic sequencing has revolutionized the way researchers read the genetic blueprint, but 

affordability and data management are two significant challenges that must be addressed. 

Challenges with Gene Sequencing 

The ability to sequence DNA has provided researchers with unprecedented opportunities to 

understand human biology and develop new therapies for diseases. However, the cost of using 

genome sequencing in routine clinical care remains a significant challenge. At present, the cost of 

sequencing a single genome in a single laboratory is around $1000 [Schwarze et al., 2020]. This 

cost can be prohibitively expensive for many people, limiting access to potentially life-saving 

genetic information. To make genomic sequencing more affordable, researchers are developing 

new technologies that could reduce the cost of sequencing and improve the accuracy of results. 

1. Data Management and Privacy 

Another significant challenge in genomics is data management. The collection, sharing, 

ownership, and storage of genomic data are all complex and time-consuming processes that require 

special attention to detail, precision, and privacy. Genomic data contains highly personal 

information about an individual's past, present, and future generations. Therefore, researchers must 

take special care to ensure that this information is recorded and managed securely to prevent 

potential misuse or breaches of privacy. 

2. Potential Misuses of Genomic Data 

The potential misuse of genomic data is a significant concern in the field of genomics. This 

information could be used to develop harmful medicines or even commit crimes, highlighting the 

importance of managing and securing genomic data carefully. Researchers must be mindful of the 

potential consequences of any data breaches or misuses, and must take steps to minimize the risk 

of these occurrences. 

Transforming Genomics through ML 

In the area of genome sequencing, machine learning can be used to identify patterns within high 

volume genetic data sets. These patterns are then used to create computer models that can help 

predict an individual's probability of developing certain diseases or inform the design of potential 

therapies. This is particularly useful in the field of precision medicine, where treatments are 

tailored to an individual's unique genetic makeup. By analyzing large data sets, machine learning 

algorithms can identify subtle differences in genetic patterns that may be associated with increased 

disease risk or specific treatment responses. 

Advancements in genomics continue to offer insights into human health and disease. For instance, 

researchers have employed genomics to identify genetic variations that contribute to various 

diseases, such as cancer, diabetes, and Alzheimer's disease.  By comparing the genomes of healthy  
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individuals to those with specific diseases, researchers can identify genetic differences and develop 

targeted treatments. 

Even companies offering genomic sequencing services to individual consumers are using machine 

learning algorithms to gain a greater understanding of how an individual's genes may impact their 

health. By analyzing genetic data, companies can predict an individual's likelihood of developing 

certain conditions, such as weight gain, and provide personalized advice on diet and exercise to 

help individuals manage their weight. 

Machine learning is also being used to predict pharmaceutical properties of drug targets and drug 

candidates. By analyzing large data sets on the molecular properties of potential drugs, machine 

learning algorithms can predict their effectiveness in treating specific diseases. This has the 

potential to greatly accelerate the drug discovery process, ultimately leading to more effective 

treatments. 

Another important area of application is in the analysis of multimodal data from genomics and 

other omics fields, combined with clinical data [National Research Council, 2011]. By integrating 

large data sets from multiple sources, machine learning algorithms can generate new diagnostic 

and predictive models for diseases, including their underlying genetic causes. This has the 

potential to greatly improve disease diagnosis and treatment, leading to better patient outcomes. 

Pharmacogenomics is another promising application of genomics, which helps doctors assign 

medication and corresponding dosage based on the patient‟s genetic markers. This technique has 

enabled specialists to provide more personalized care and improve patient outcomes. CRISPR is 

another revolutionary technology that has made it possible to treat chronic diseases like HIV [Xiao 

et al., 2019], β-thalassemia [Frangoul et al., 2021], cancers [Chen et al., 2019], leukemia [Tzelepis 

et al., 2016], and sickle cell anemia [Frangoul et al., 2021]. 

Despite ongoing debates on the ethics of genetic testing without a clear cure, the availability of 

genetic information through next-generation sequencing and direct-to-consumer testing makes 

personalized prevention and management of serious diseases a reality. 

1. Next Generation Sequencing 

Next Generation Sequencing (NGS) technology has revolutionized genome sequencing and 

emerged as the leading method. Compared to classic Sanger sequencing that took over a decade to 

complete the human genome, NGS allows researchers to sequence a whole human genome in just 

one day. Illumina sequencing is currently the most popular technology due to its cost, speed, and 

accuracy [Liu et al., 2012]. However, long-read sequencing technologies like those created by 

Oxford Nanopore [Green and Sambrook, 2018] and Pacific Biosciences [Rhoads and Au, 2015] 

generate longer reads that are thousands of base pairs long, but lower in quality than short-read 

sequencing. 

NGS data has the potential to supplement other genomic sequencing methods and improve the 

effectiveness of precision medicine by better identifying disease risk and actionable genetic 

mutations in cancer patients. This technology can aid in the development of drugs targeting tumors 

and matching patients to therapy methods.  Companies like Deep Genomics are using machine  
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learning algorithms to interpret genetic variation by identifying patterns in large genetic datasets 

and translating them into computer models. 

DNA sequencing data is stored in the FASTQ format, which consists of four corresponding lines 

of text for each sequence. FASTA is another commonly used text-based file format for storing 

reference genomes. Algorithms map sequencing reads to reference genomes, and these results are 

stored in Sequence Alignment Map (SAM) or its binary equivalent (BAM) file formats 

[Hoogstrate et al., 2021]. While SAM files are readable by humans, BAM files are used to 

compress the data due to the large file sizes. Finally, variant call format (VCF) files describe the 

sequence variations, insertions, and deletions found in samples along with rich annotations [Zhang, 

2016; Morash et al., 2018]. 

Although the efficacy of NGS data in precision medicine remains controversial due to 

experimental design, the technology's potential for development is immense. The improved 

methods for analyzing sequenced data can help in the development of precision medicine. NGS 

technology, combined with machine learning, can also help identify and interpret genetic variation 

and its effects on crucial cellular processes. 

2. Variant Discovery 

Variant discovery is a critical step in understanding the genetic basis of various diseases. Whole 

genome sequencing (WGS) is a technique that involves sequencing an individual's entire genome, 

including both protein-coding and non-protein-coding regions, while the entire exon sequencing 

(WES) focuses solely on the protein-coding regions [Petersen et al., 2017]. By using variant 

calling, researchers can identify various types of variants, providing valuable insights into disease 

diagnosis and prevention. 

There are three main types of pipelines used for WGS and WES: cloud-computing, centralized, 

and standalone [Ahmed et al., 2021]. Cloud-computing pipelines are utilized in environments with 

on-demand compute resources provided by external vendors. On the other hand, centralized 

pipelines are used in local computers, while standalone pipelines are mainly used in high-

performance computing environments. These pipelines have been designed to effectively collect 

and process data from WGS or WES, allowing researchers or medical professionals to recognize 

the links between genetic variants and diseases. 

3. Gene Editing 

Gene editing involves making targeted changes to DNA at the cellular or organism level. CRISPR 

is a gene editing technology that has made this process faster and less expensive. However, 

selecting the appropriate target sequence for CRISPR can be a challenging task. Luckily, the use of 

machine learning has the potential to significantly reduce the time, cost, and effort required to 

identify the right target sequence. Continued research and development in this area could 

revolutionize the field of gene editing. 

At the intersection of AI and CRISPR, London-based software company Desktop Genetics has 

emerged. The company works with experimental or reference data uploaded to Google Cloud, 

which is then processed and formatted before being sent to their bioinformatics and machine   
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learning teams. By analyzing this data, they can design and conduct CRISPR experiments, develop 

new models, and generate FASTQ data that feeds back into the workflow. 

Recently, the company published two significant findings from their research. Firstly, they found 

that an increased amount of training data improves the accuracy of the algorithm's ability to predict 

CRISPR activity. Secondly, they discovered that the model's accuracy decreases when applied to a 

different species, such as humans versus mice. Although these findings may not be surprising, they 

highlight the importance of ongoing research to continue improving processes and push the 

boundaries of how machine learning can impact CRISPR. 

4. Clinical Workflow 

In today's world, where technology has penetrated every aspect of our lives, it is no surprise that 

the genomics and healthcare industries are also reaping the benefits of technological 

advancements. With the help of artificial intelligence (AI) and machine learning, the healthcare 

sector is trying to revolutionize the way it functions. 

One of the challenges that the healthcare sector faces is the availability of patient data to the 

various members of the healthcare team serving a patient. However, this challenge has sparked an 

interest in using machine learning to improve the efficiency of the clinical workflow process. 

Intel, a major tech company, has created an Analytics Toolkit that integrates machine learning 

capabilities to evaluate factors like a patient's risk of developing multiple cancers. The algorithm 

utilized in the toolkit was created with four primary components, including a centralized genomic 

data database linked to clinical and patient data, electronic health record (EHR) access for all 

clinicians and genetic counselors, integration of all data from genetic tests into EHRs, and access 

to operational Clinical Decision Support tools (CDS). Examples of clinical decision support 

include family health histories, screenings, and past clinical data. 

It has been reported that a sample workflow for a patient can be screened in just 3 to 5 minutes 

with the workflow model developed using machine learning. This has contributed to improved 

data accessibility. Despite the regulatory issues and complex sales cycles, many of the major 

players in artificial intelligence are recognizing the significant economic value of AI in healthcare. 

5. Direct-to-Consumer Genomics 

The market for predictive genetic testing and consumer genomics is set to expand dramatically, 

and is expected to touch $5 billion by 2025. This growth is fueled by the increasing awareness of 

how genomic testing can aid in identifying one's risk of developing certain illnesses. Proper 

guidance can make these tests a valuable tool in preventative healthcare, despite concerns 

regarding regulation and the need for health professionals to interpret results for patients. 

Direct-to-consumer genomics is a rapidly expanding industry, especially as people become more 

conscious of their lifestyle and dietary habits. Personalized analyses of an individual's genetic 

makeup, taking into account factors like genotype, sex, age, and self-identified primary ancestry, 

can help determine how one's genetic material may impact their weight. However, there are still 

concerns about the regulation of these tests and the necessity of professional interpretation of 

results. 
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6. Clinical Genomics 

Clinical genomics is a rapidly developing field that leverages sequencing techniques to identify 

genes associated with diseases. The approach can detect abnormalities in patients, predict their 

susceptibility to certain diseases, and facilitate the development of treatments for rare diseases. 

However, the usefulness of genomics data depends on how it is organized and assimilated. 

One essential tool for organizing and assimilating genomic and phenotypic data is gene-disease 

databases. Despite the existence of approximately 18,000 gene-disease databases [Huang et al., 

2018] only a few are approved by the American College of Medical Genetic and Genomics 

(ACMG). One significant challenge with these databases is their lack of standardization, which 

may lead to outdated or irrelevant information about diseases. 

To address this challenge, researchers have developed IOS applications such as PAS-Gen and 

PROMIS-APP-SUITE. These applications provide a centralized database for genomic and disease 

information [Stenson et al., 2017], making it more accessible and practical for researchers and 

healthcare professionals. By providing standardized and up-to-date information, these apps can 

accelerate medical discoveries and aid in the development of treatments for various genetic 

diseases. 

7. Precision Medicines  

The integration of machine learning into genomics has brought about significant advancements in 

precision medicine. Machine learning algorithms have revolutionized the analysis of vast amounts 

of genomic data, enabling the identification of genetic mutations and patterns that are linked to 

various diseases and disorders. Such insights are used to develop patient-specific treatment plans, 

thereby improving outcomes and lowering healthcare expenses. 

Precision medicine is an approach to patient care that takes into account an individual's unique 

genetics, behaviors, and environment. Its goal is to create tailored treatment interventions instead 

of a one-size-fits-all approach. For example, matching a patient in need of a blood transfusion to a 

donor with the same blood type can significantly reduce the risk of complications. 

Despite the potential benefits of precision medicine, a significant obstacle to its widespread 

implementation is the high cost of collecting and analyzing patient data. Machine learning 

techniques are useful in reducing these costs by swiftly and effectively analyzing vast amounts of 

data. Furthermore, as the cost of genome sequencing continues to decline, genomics is becoming 

more accessible and affordable. 

By leveraging machine learning techniques, genomics firms and researchers can hasten the pace of 

discovery and create more personalized treatment plans for patients. As the field of genomics 

progresses, we can anticipate exciting advancements in precision medicine and other aspects of 

healthcare. Overall, the integration of machine learning into genomics has the potential to 

significantly enhance patient outcomes and lower healthcare costs. 

8. Diagnostics 

The use of artificial intelligence (AI) in medical biotechnology has great potential to revolutionize 

the field.  However, implementing AI algorithms in in vitro diagnostics (IVD) companies presents  
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significant challenges, particularly related to ethical and legal issues. Despite these obstacles, AI 

can be utilized in several ways to improve medical biotechnology. 

Drug target identification: One way in which AI can be utilized in medical biotechnology is drug 

target identification. By analyzing genomic data and protein-protein interaction data, AI can 

identify potential therapeutic targets for the treatment of diseases. Machine learning algorithms can 

identify patterns and correlations that may not be apparent to humans. 

Drug screening: Another application of AI in medical biotechnology is drug screening. AI can 

analyze data on the activity of potential drugs against different targets and identify those most 

likely to be effective. Machine learning algorithms can predict the likelihood of a particular drug 

being effective based on its characteristics and the characteristics of the target. 

Image screening: AI can also be utilized in medical image screening. By analyzing CT scans and 

MRI images, AI can identify abnormalities and diagnose diseases. Deep learning algorithms can 

automatically segment and classify structures in medical images. 

Predictive Modeling: AI can be used for predictive modeling. By analyzing data from electronic 

health records and wearable devices, machine learning algorithms can make predictions about an 

individual's health. This includes predicting the likelihood of an individual developing a particular 

disease or the likelihood of a particular treatment being effective. 

9. Cardiovascular Disease 

The field of cardiovascular medicine has a rich history of employing predictive modeling to 

evaluate patient risk. Recent advancements have enabled the prediction of heart failure and other 

cardiac events in asymptomatic individuals. When utilized in conjunction with personalized 

prevention strategies, these predictive models hold the potential to have a positive impact on 

disease incidence and its effects. The intricacy of diseases such as cardiovascular disease 

necessitates the integration of various factors, including gender, genetics, lifestyle, and 

environmental factors. As a result, it is critical to consider the heterogeneity of the data, and 

artificial intelligence (AI) approaches have exhibited promise in identifying intricate connections 

among a vast number of factors. A Vanderbilt study showcased the early successes of merging 

electronic health record (EHR) and genetic data, yielding favorable outcomes in cardiovascular 

disease prediction [Zhao, et al., 2019]. AI-powered recognition of phenotype features via EHR or 

images and correlating those features with genetic variants may enable more rapid genetic disease 

diagnosis [Gurovich et al., 2019]. 

Future Prospects  

The field of genomics is rapidly advancing, and machine learning is expected to have a significant 

impact in several areas. One of these areas is the development of patient-specific pharmaceutical 

drugs. Machine learning models are being used to determine stable doses of drugs including those 

commonly administered to patients following solid organ transplants to prevent acute rejection of 

the new organ. Pharmacogenomics is an emerging field that uses genetics to understand how 

individuals respond to drugs, and machine learning is expected to play a crucial role in this field. 
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Another area where machine learning is expected to have a significant impact is in newborn 

genetic screening. As this practice becomes more widespread, data collected at birth will be 

integrated into individuals' electronic health records. Non-invasive screening capabilities for 

diseases such as Down Syndrome may be available to women during pregnancy.  

Roadblocks 

Managing, analyzing, and storing the large amounts of data generated by healthcare and genomics 

industries is a daunting task. Current data management systems face various challenges, such as 

data sharing, analysis cost, data ownership, privacy, and security. Researchers have developed 

different solutions to tackle these problems, including Data Cloud Architecture, Data Commons, 

and Data Ecosystem. However, these solutions still have scalability and flexibility issues. 

Recently, blockchain technology has emerged as a promising solution to address these challenges. 

With its decentralized, distributed, and immutable nature, blockchain can provide secure and 

transparent data management solutions. Moreover, blockchain can reduce the analysis cost of 

genomics and healthcare applications by enabling faster and more efficient transactions compared 

to traditional processes. 

Blockchain technology also offers pseudo-anonymity to ensure personal data security and privacy. 

Individuals can modify their data access permissions and use encryption methods, such as 

symmetric encryption, to secure their data further [Garg, 2023b]. Thus, blockchain technology has 

enormous potential to be a valuable cornerstone in building a Data Ecosystem for healthcare 

applications. 

Blockchain as a Way-out 

Blockchain technology can revolutionize the healthcare industry by enabling secure, transparent, 

and efficient sharing of electronic health records (EHRs) and genetic test results. The use of 

blockchain technology has led to the development of several platforms such as Coral Health, 

Patientory, Medicalchain, and GemOS, all built on Ethereum and Hyperledger protocols.  

Coral Health is a data sharing platform that creates a secure and accessible healthcare ecosystem 

through a precision medicine program. The system uses SMART and FHIR protocols to connect 

mobile devices of patients and other environments hosting their medical data [Coral Health, 2023]. 

EncrypGen and Gene-Chain are other platforms that use blockchain technology to de-identify 

genomic data and enable safe, traceable, and unhackable transactions of genomic data. 

Health Nexus is an open-source blockchain protocol that offers a more efficient, trustworthy, and 

secure path for data to travel in the healthcare community. Medicalchain is an EHR sharing project 

that employs a dual blockchain structure with Hyperledger controlling access to health records and 

Ethereum underlies all the applications and services. MedRec and Opal are other encrypted 

platforms that use blockchain technology to manage authentication, confidentiality, accountability, 

and data sharing of sensitive healthcare information. 

Nebula Genomics is a platform that leverages blockchain technology to empower individuals to 

own their personal genomic data, lower sequencing costs, and enhance data privacy. The platform 

uses an open protocol to enable data buyers to efficiently aggregate standardized data from many  
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individuals and genomic databanks [Nebula Genomics, 2023]. Zenome is another platform that 

focuses on genetic data sharing and has an Ethereum-based ZNA token [Kulemin, Popov & 

Gorbachev, 2017]. 

These platforms offer a scalable and flexible approach to patient-centric healthcare and 

personalized medicine and present an exciting opportunity for innovation in data transfer for the 

healthcare community. 

Discussion 

In recent years, Artificial Intelligence (AI) has played a significant role in the biotechnology 

industry, particularly in fields such as drug discovery, drug safety, proteomics, pharmacology, and 

pharmacogenetics. These fields require the storage, filtering, analysis, and sharing of large 

amounts of data, and AI software solutions have provided support to increase speed and reduce 

manual errors [McAlister et al., 2017; Ginsburg and Phillips, 2018]. The adoption of new 

technologies and processes to improve efficiency, accuracy, and speed through digital 

transformation can further accelerate the development and use of AI in biotechnology. 

In healthcare, the successful adoption of AI is dependent on three key principles: data and security, 

analytics and insights, and shared expertise. Shared expertise refers to the complementary 

relationship between AI systems and human professionals. Moreover, precision medicine, which 

aims to personalize care for every individual, is providing an equal or even greater influence than 

AI on the direction of healthcare. Precision medicine requires access to massive amounts of data, 

and the convergence of AI and precision medicine can accelerate the goals of personalized care 

and tightly couple AI to healthcare providers for the foreseeable future. 

The future of biotechnology and healthcare is dependent on several key areas, including genomics, 

AI, big data, and blockchain. Precision medicine is one of the target areas in this field, with 

numerous advantages such as more accurate diagnoses, easy access to medical data, and a better 

understanding of diseases and their causes [Hasin et al., 2017]. However, implementing precision 

medicine can be challenging due to the lack of a system to compare multi-omics patient data and 

identify appropriate approaches to use with different types of medical data [Picard et al., 2021]. 

Ethical and logistical issues also need to be considered in clinical genomics, big data, and 

pharmacogenomics implementation. 

To address these challenges, multiple approaches need to be integrated into precision medicine. By 

combining information from different fields, researchers can gain a more comprehensive 

understanding of a medical case and select an appropriate treatment method. For example, the 

integration of AI and genomics has led to significant developments in disease analysis and 

prediction, resulting in faster decision-making. 

However, the integration of multi-omics datasets is crucial in capturing the complexity of each 

omics approach. More benchmark studies are needed to determine the best machine-learning 

strategy to implement. Multi-omics integrative models can help in understanding disease 

abnormalities that are not always possible with only genomic or other single-omics analysis. 

The field of precision medicine has seen remarkable growth with the advent of advancements in 

AI, healthcare, clinical genomics, and pharmacogenomics.  These developments have generated an  
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enormous amount of data, which can provide insights into personalized treatment options. 

However, incomplete or inaccurate healthcare-specific information in open access clinical data and 

claims data presents difficulties in determining how patient-specific treatment is appropriate or 

effective. The same limitation exists in genomic databases, where data cannot be easily transferred 

from one database to another. These limitations complicate the process of cross-referencing data 

between different databases, which can prove to be an obstacle to efficient patient treatment. 

Pharmacogenomics focuses on an individual's reaction to specific treatments and medications 

rather than the disease itself. By correlating a patient's genomic makeup and their reaction to 

treatments, it allows for more precise and personalized prescription of treatment. However, this 

field is still developing and has not been utilized reliably. 

The large influx of data generated in precision medicine presents an issue, as no reliable or 

standardized means of analysis has been developed. The use of AI and ML techniques alleviates 

this issue by allowing for efficient data management and the ability to recognize patterns in 

complex datasets. These techniques can predict pharmaceutical properties of drug targets and drug 

candidates, which is especially beneficial in clinical settings. 

Conclusion 

The integration of artificial intelligence (AI), machine learning (ML), and blockchain technology 

in the fields of genomics, healthcare, and biotechnology has the potential to modernize these 

industries. AI can improve diagnosis accuracy, aid in clinical decision-making, and provide 

personalized patient experiences. However, ethical and social considerations must be taken into 

account. 

ML is increasingly important in genomics research and may become an even more crucial tool in 

unlocking the secrets of the genome. In the healthcare sector, the integration of AI and ML can 

revolutionize patient care by improving access to data and using it more efficiently. Additionally, 

the development of precision medicine requires a combination of different approaches. 

Blockchain technology can enhance security and transparency in the storage and sharing of patient 

data. However, energy and computation efficiency should be considered when implementing this 

technology. Despite the challenges that need to be addressed, the potential benefits of these 

technologies in improving patient care and disease prevention cannot be overlooked.  

The impact of big data analytics and AI on the healthcare industry is enormous. AI-based tools can 

help mitigate healthcare fraud, medical coding errors, and improve patient care. Healthcare 

policymakers and government also use AI-based tools to control and predict infections and 

outbreaks. With the advent of COVID-19, AI models can predict at-risk populations and provide 

additional risk information to clinicians caring for at-risk patients. In our journey towards a 

progressively technology-driven future, it is crucial that we place utmost importance on the well-

being of every individual inhabiting our planet. 
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