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Abstract

Data-driven approaches using Al, ML, and blockchain have revolutionized biotechnology and genomics.
The present paper delves into the exciting possibilities that arise from the intersection of Al, ML, and
blockchain technology with genomics, healthcare, and biotechnology. The use of these advanced
technologies allows for the creation of radical applications that leverage machine learning, Big Data
analytics, natural language processing, decision support, and reasoning under uncertainty. Such applications
provide unprecedented avenues for improving human health and well-being.

By assimilating Al with biotechnology, researchers can develop cutting-edge applications that enable
genomic sharing, next-generation sequencing, gene editing, clinical workflow optimization, risk prediction,
diagnosis, and precision medicine. The potential applications of Al, ML, and blockchain in these areas are
truly transformative, and have the power to revolutionize the future of healthcare. The survey showcases the
significant impact of these technologies in improving patient outcomes, reducing costs, and increasing the
efficiency of healthcare delivery. With the help of Al, ML, and blockchain, one can realize a future where
healthcare is more personalized, effective, and accessible to everyone.

Keywords: Artificial Intelligence, Biotechnology, Blockchain, Deep Learning, Digital Transformation,
Machine Learning.

Introduction

Big data has become an essential aspect of modern society, with its significance spread across
various industries and fields. In 2001, Gartner introduced the 3Vs of data: Volume, Velocity, and
Variety. Since then, the field of data analytics has expanded on this concept by adding two more
Vs - Value and Veracity. Here, volume refers to the massive amount of data, which is often
complex and heterogeneous. Traditional database technology cannot handle this volume of data,
leading to the need for advanced analytics to extract insights. Velocity refers to the speed at which
new data is generated and moves around. Variety refers to the different types of structured, semi-
structured, and unstructured data available, such as social media conversations and voice
recordings. Veracity refers to the certainty, accuracy, relevance, and predictive value of the data,
while value refers to the conversion of data into business insights.

The genomics and healthcare industry is one of the sectors that have been impacted significantly
by big data and artificial intelligence (Al). Big data analytics and Al have become omnipresent
across the entire healthcare spectrum, including payers, providers, policy-makers/ government,
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patients, and product manufacturers. Healthcare fraud and abuse account for up to 10% of global
healthcare expenditure, and Al-based tools can help mitigate this problem in payer programs
[Joudaki, et al., 2015]. Medical coding errors and incorrect claims also account for substantial
losses, and the reliable identification of these errors can save payers, providers, and governments
significant amounts of money and time [Davenport and Kalakota, 2019].

Al is also used for evidence-based clinical decision support, detection of adverse events, and
predicting patients at risk for readmission. Healthcare policymakers and government can use Al-
based tools to control and predict infections and outbreaks.

With the advent of the global pandemic coronavirus disease 2019 (COVID- 19) in early 2020, Al
models could be used to predict at-risk populations and provide additional risk information to
clinicians caring for at-risk patients [Vaishya et al., 2020]. The big data analytics for patients and
biotechnology/ healthcare products is a crucial aspect of healthcare and the future of healthcare
will depend significantly on these technologies - Al, ML and Blockchain to provide efficient and
effective care to patients.

Avrtificial Intelligence Vs Machine Learning

Artificial Intelligence (Al) and Machine Learning (ML) are two terms that are often used
interchangeably, but they represent different concepts. Al refers to the broad vision of generating
computers and software that can perform tasks that require human intelligence. On the other hand,
ML is a subfield of Al that involves training computers to perform tasks without explicit
instructions using patterns and insights from data. Deep Learning (DL) is a subset of ML that uses
artificial neural networks with many layers to learn and make decisions. It is particularly useful for
tasks that involve analyzing large amounts of data [Garg, 2023a].

The Al field was initiated in 1956 when a group of computer scientists met at Dartmouth College
in Hanover, New Hampshire. The group had ambitious goals to create machines that could
simulate every aspect of human intelligence. Since then, Al has gone through many ups and
downs, including an Al winter in the 1980s. However, the rise of statistical data-driven ML helped
to revive the field of Al. Today, Al is experiencing a resurgence, and the latest natural language
technology developed by OpenAl, called ChatGPT, is proof of what Al can do.

There are three major classes of ML: supervised learning, unsupervised learning, and
reinforcement learning. Supervised learning aims to predict a classification or label of data points
using a given set of labeled training examples. In contrast, unsupervised learning aims to learn
inherent patterns within the data. Reinforcement learning is based on rewarding desired behavior
and punishing undesired behavior of software agents.

DL models are more flexible than standard ML methods and can model more complex
relationships between inputs and outputs [LeCun et.al, 2015; Zou et.al, 2019]. Different types of
neural networks have been developed for specific tasks such as convolutional neural networks,
which capture spatial dependencies, and recurrent neuronal networks, which handle sequential or
time-series data.

Thus, Al aims to provide the theoretical fundamentals for ML to develop software that can learn
autonomously from previous experience. To reach a level of usable intelligence, we need to learn
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from prior data, extract knowledge, generalize, fight the curse of dimensionality, and disentangle
the underlying explanatory factors of the data. The grand goal is to create software that can learn
automatically without human intervention.

Al in Genomics and Healthcare

Artificial Intelligence (Al) has revolutionized many domains, and healthcare is no exception. It
involves the use of technology to create software that mimics human-like critical thinking
[Ramesh et al., 2004]. Al uses techniques such as fuzzy expert systems and artificial neural
networks [Hessler and Baringhaus, 2018; Mintz and Brodie, 2019] to provide personalized
experiences where predictions are backed by mathematical data points. The field of Al in
healthcare can be divided into two subunits, virtual and physical. The virtual aspect of Al involves
electronic healthcare records [Esteva et al., 2019] and neural networks guiding patient treatments
[McDonnell et al., 2021], while the physical aspect involves robots assisting in surgeries and Al-
generated prosthetics for the disabled.

Over the past decade, Al has seen remarkable growth and acceptance in genomics and
biotechnology. It provides rich opportunities for designing intelligent products, creating novel
services, and generating new business models. The use of Al in medicine can introduce social and
ethical challenges to security, privacy, and human rights.

Al technologies in medicine exist in many forms, from the purely virtual to cyber-physical. Al
technologies have enabled many image-based detection and diagnostic systems in healthcare to
perform as well or better than clinicians. Al-enabled clinical decision-support systems may reduce
diagnostic errors, augment intelligence to support decision making, and assist clinicians with EHR
data extraction and documentation tasks.

Emerging computational improvements in natural language processing, pattern identification,
efficient search, prediction, and bias-free reasoning will lead to further capabilities in Al that
address currently intractable problems [Biamonte et al., 2017]. However, the advances in the
computational capability of Al have prompted concerns that Al technologies will eventually
replace physicians.

Therefore, the term augmented intelligence [Ashby, 1957] may be a more apt description of the
future interplay among data, computation, and healthcare providers, and perhaps a better definition
for the abbreviation Al in healthcare.

Insights into the Blueprint of Life

The human genome is the foundation for the expression of human traits, consisting of unique
biological DNA that makes each individual distinct. The advent of genomics has revolutionized
the field of molecular biology, enabling scientists to map the structure and function of genomes.
Each human genome contains 20,000 to 25,000 genes, with every gene comprising a few hundred
to 2 million DNA bases [International Human Genome Sequencing Consortium, 2001]. The
mapping of the human genome in 2003 opened up numerous possibilities for using genomics in
the medical field.
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Gene expression occurs through transcription and translation, with RNA splicing in between,
resulting in diversity in protein coding. However, errors in splicing or mutations can cause a range
of diseases [Fletcher et al., 2013]. While protein-coding DNA accounts for only a small percentage
of the genome, a significant portion is transcribed into non-protein-coding RNAs (ncRNAs) that
regulate gene expression and transcription initiation and termination [Mattick and Makunin, 2006].
Genomic sequencing has revolutionized the way researchers read the genetic blueprint, but
affordability and data management are two significant challenges that must be addressed.

Challenges with Gene Sequencing

The ability to sequence DNA has provided researchers with unprecedented opportunities to
understand human biology and develop new therapies for diseases. However, the cost of using
genome sequencing in routine clinical care remains a significant challenge. At present, the cost of
sequencing a single genome in a single laboratory is around $1000 [Schwarze et al., 2020]. This
cost can be prohibitively expensive for many people, limiting access to potentially life-saving
genetic information. To make genomic sequencing more affordable, researchers are developing
new technologies that could reduce the cost of sequencing and improve the accuracy of results.

1. Data Management and Privacy

Another significant challenge in genomics is data management. The collection, sharing,
ownership, and storage of genomic data are all complex and time-consuming processes that require
special attention to detail, precision, and privacy. Genomic data contains highly personal
information about an individual's past, present, and future generations. Therefore, researchers must
take special care to ensure that this information is recorded and managed securely to prevent
potential misuse or breaches of privacy.

2. Potential Misuses of Genomic Data

The potential misuse of genomic data is a significant concern in the field of genomics. This
information could be used to develop harmful medicines or even commit crimes, highlighting the
importance of managing and securing genomic data carefully. Researchers must be mindful of the
potential consequences of any data breaches or misuses, and must take steps to minimize the risk
of these occurrences.

Transforming Genomics through ML

In the area of genome sequencing, machine learning can be used to identify patterns within high
volume genetic data sets. These patterns are then used to create computer models that can help
predict an individual's probability of developing certain diseases or inform the design of potential
therapies. This is particularly useful in the field of precision medicine, where treatments are
tailored to an individual's unique genetic makeup. By analyzing large data sets, machine learning
algorithms can identify subtle differences in genetic patterns that may be associated with increased
disease risk or specific treatment responses.

Advancements in genomics continue to offer insights into human health and disease. For instance,
researchers have employed genomics to identify genetic variations that contribute to various
diseases, such as cancer, diabetes, and Alzheimer's disease. By comparing the genomes of healthy
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individuals to those with specific diseases, researchers can identify genetic differences and develop
targeted treatments.

Even companies offering genomic sequencing services to individual consumers are using machine
learning algorithms to gain a greater understanding of how an individual's genes may impact their
health. By analyzing genetic data, companies can predict an individual's likelihood of developing
certain conditions, such as weight gain, and provide personalized advice on diet and exercise to
help individuals manage their weight.

Machine learning is also being used to predict pharmaceutical properties of drug targets and drug
candidates. By analyzing large data sets on the molecular properties of potential drugs, machine
learning algorithms can predict their effectiveness in treating specific diseases. This has the
potential to greatly accelerate the drug discovery process, ultimately leading to more effective
treatments.

Another important area of application is in the analysis of multimodal data from genomics and
other omics fields, combined with clinical data [National Research Council, 2011]. By integrating
large data sets from multiple sources, machine learning algorithms can generate new diagnostic
and predictive models for diseases, including their underlying genetic causes. This has the
potential to greatly improve disease diagnosis and treatment, leading to better patient outcomes.

Pharmacogenomics is another promising application of genomics, which helps doctors assign
medication and corresponding dosage based on the patient’s genetic markers. This technique has
enabled specialists to provide more personalized care and improve patient outcomes. CRISPR is
another revolutionary technology that has made it possible to treat chronic diseases like HIV [Xiao
et al., 2019], B-thalassemia [Frangoul et al., 2021], cancers [Chen et al., 2019], leukemia [Tzelepis
et al., 2016], and sickle cell anemia [Frangoul et al., 2021].

Despite ongoing debates on the ethics of genetic testing without a clear cure, the availability of
genetic information through next-generation sequencing and direct-to-consumer testing makes
personalized prevention and management of serious diseases a reality.

1. Next Generation Sequencing

Next Generation Sequencing (NGS) technology has revolutionized genome sequencing and
emerged as the leading method. Compared to classic Sanger sequencing that took over a decade to
complete the human genome, NGS allows researchers to sequence a whole human genome in just
one day. lllumina sequencing is currently the most popular technology due to its cost, speed, and
accuracy [Liu et al., 2012]. However, long-read sequencing technologies like those created by
Oxford Nanopore [Green and Sambrook, 2018] and Pacific Biosciences [Rhoads and Au, 2015]
generate longer reads that are thousands of base pairs long, but lower in quality than short-read
sequencing.

NGS data has the potential to supplement other genomic sequencing methods and improve the
effectiveness of precision medicine by better identifying disease risk and actionable genetic
mutations in cancer patients. This technology can aid in the development of drugs targeting tumors
and matching patients to therapy methods. Companies like Deep Genomics are using machine
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learning algorithms to interpret genetic variation by identifying patterns in large genetic datasets
and translating them into computer models.

DNA sequencing data is stored in the FASTQ format, which consists of four corresponding lines
of text for each sequence. FASTA is another commonly used text-based file format for storing
reference genomes. Algorithms map sequencing reads to reference genomes, and these results are
stored in Sequence Alignment Map (SAM) or its binary equivalent (BAM) file formats
[Hoogstrate et al., 2021]. While SAM files are readable by humans, BAM files are used to
compress the data due to the large file sizes. Finally, variant call format (VCF) files describe the
sequence variations, insertions, and deletions found in samples along with rich annotations [Zhang,
2016; Morash et al., 2018].

Although the efficacy of NGS data in precision medicine remains controversial due to
experimental design, the technology's potential for development is immense. The improved
methods for analyzing sequenced data can help in the development of precision medicine. NGS
technology, combined with machine learning, can also help identify and interpret genetic variation
and its effects on crucial cellular processes.

2. Variant Discovery

Variant discovery is a critical step in understanding the genetic basis of various diseases. Whole
genome sequencing (WGS) is a technique that involves sequencing an individual's entire genome,
including both protein-coding and non-protein-coding regions, while the entire exon sequencing
(WES) focuses solely on the protein-coding regions [Petersen et al., 2017]. By using variant
calling, researchers can identify various types of variants, providing valuable insights into disease
diagnosis and prevention.

There are three main types of pipelines used for WGS and WES: cloud-computing, centralized,
and standalone [Ahmed et al., 2021]. Cloud-computing pipelines are utilized in environments with
on-demand compute resources provided by external vendors. On the other hand, centralized
pipelines are used in local computers, while standalone pipelines are mainly used in high-
performance computing environments. These pipelines have been designed to effectively collect
and process data from WGS or WES, allowing researchers or medical professionals to recognize
the links between genetic variants and diseases.

3. Gene Editing

Gene editing involves making targeted changes to DNA at the cellular or organism level. CRISPR
is a gene editing technology that has made this process faster and less expensive. However,
selecting the appropriate target sequence for CRISPR can be a challenging task. Luckily, the use of
machine learning has the potential to significantly reduce the time, cost, and effort required to
identify the right target sequence. Continued research and development in this area could
revolutionize the field of gene editing.

At the intersection of Al and CRISPR, London-based software company Desktop Genetics has
emerged. The company works with experimental or reference data uploaded to Google Cloud,
which is then processed and formatted before being sent to their bioinformatics and machine
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learning teams. By analyzing this data, they can design and conduct CRISPR experiments, develop
new models, and generate FASTQ data that feeds back into the workflow.

Recently, the company published two significant findings from their research. Firstly, they found
that an increased amount of training data improves the accuracy of the algorithm's ability to predict
CRISPR activity. Secondly, they discovered that the model's accuracy decreases when applied to a
different species, such as humans versus mice. Although these findings may not be surprising, they
highlight the importance of ongoing research to continue improving processes and push the
boundaries of how machine learning can impact CRISPR.

4. Clinical Workflow

In today's world, where technology has penetrated every aspect of our lives, it is no surprise that
the genomics and healthcare industries are also reaping the benefits of technological
advancements. With the help of artificial intelligence (Al) and machine learning, the healthcare
sector is trying to revolutionize the way it functions.

One of the challenges that the healthcare sector faces is the availability of patient data to the
various members of the healthcare team serving a patient. However, this challenge has sparked an
interest in using machine learning to improve the efficiency of the clinical workflow process.

Intel, a major tech company, has created an Analytics Toolkit that integrates machine learning
capabilities to evaluate factors like a patient's risk of developing multiple cancers. The algorithm
utilized in the toolkit was created with four primary components, including a centralized genomic
data database linked to clinical and patient data, electronic health record (EHR) access for all
clinicians and genetic counselors, integration of all data from genetic tests into EHRs, and access
to operational Clinical Decision Support tools (CDS). Examples of clinical decision support
include family health histories, screenings, and past clinical data.

It has been reported that a sample workflow for a patient can be screened in just 3 to 5 minutes
with the workflow model developed using machine learning. This has contributed to improved
data accessibility. Despite the regulatory issues and complex sales cycles, many of the major
players in artificial intelligence are recognizing the significant economic value of Al in healthcare.

5. Direct-to-Consumer Genomics

The market for predictive genetic testing and consumer genomics is set to expand dramatically,
and is expected to touch $5 billion by 2025. This growth is fueled by the increasing awareness of
how genomic testing can aid in identifying one's risk of developing certain illnesses. Proper
guidance can make these tests a valuable tool in preventative healthcare, despite concerns
regarding regulation and the need for health professionals to interpret results for patients.

Direct-to-consumer genomics is a rapidly expanding industry, especially as people become more
conscious of their lifestyle and dietary habits. Personalized analyses of an individual's genetic
makeup, taking into account factors like genotype, sex, age, and self-identified primary ancestry,
can help determine how one's genetic material may impact their weight. However, there are still
concerns about the regulation of these tests and the necessity of professional interpretation of
results.
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6. Clinical Genomics

Clinical genomics is a rapidly developing field that leverages sequencing techniques to identify
genes associated with diseases. The approach can detect abnormalities in patients, predict their
susceptibility to certain diseases, and facilitate the development of treatments for rare diseases.
However, the usefulness of genomics data depends on how it is organized and assimilated.

One essential tool for organizing and assimilating genomic and phenotypic data is gene-disease
databases. Despite the existence of approximately 18,000 gene-disease databases [Huang et al.,
2018] only a few are approved by the American College of Medical Genetic and Genomics
(ACMG). One significant challenge with these databases is their lack of standardization, which
may lead to outdated or irrelevant information about diseases.

To address this challenge, researchers have developed 10S applications such as PAS-Gen and
PROMIS-APP-SUITE. These applications provide a centralized database for genomic and disease
information [Stenson et al., 2017], making it more accessible and practical for researchers and
healthcare professionals. By providing standardized and up-to-date information, these apps can
accelerate medical discoveries and aid in the development of treatments for various genetic
diseases.

7. Precision Medicines

The integration of machine learning into genomics has brought about significant advancements in
precision medicine. Machine learning algorithms have revolutionized the analysis of vast amounts
of genomic data, enabling the identification of genetic mutations and patterns that are linked to
various diseases and disorders. Such insights are used to develop patient-specific treatment plans,
thereby improving outcomes and lowering healthcare expenses.

Precision medicine is an approach to patient care that takes into account an individual's unique
genetics, behaviors, and environment. Its goal is to create tailored treatment interventions instead
of a one-size-fits-all approach. For example, matching a patient in need of a blood transfusion to a
donor with the same blood type can significantly reduce the risk of complications.

Despite the potential benefits of precision medicine, a significant obstacle to its widespread
implementation is the high cost of collecting and analyzing patient data. Machine learning
techniques are useful in reducing these costs by swiftly and effectively analyzing vast amounts of
data. Furthermore, as the cost of genome sequencing continues to decline, genomics is becoming
more accessible and affordable.

By leveraging machine learning techniques, genomics firms and researchers can hasten the pace of
discovery and create more personalized treatment plans for patients. As the field of genomics
progresses, we can anticipate exciting advancements in precision medicine and other aspects of
healthcare. Overall, the integration of machine learning into genomics has the potential to
significantly enhance patient outcomes and lower healthcare costs.

8. Diagnostics

The use of artificial intelligence (Al) in medical biotechnology has great potential to revolutionize
the field. However, implementing Al algorithms in in vitro diagnostics (IVD) companies presents
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significant challenges, particularly related to ethical and legal issues. Despite these obstacles, Al
can be utilized in several ways to improve medical biotechnology.

Drug target identification: One way in which Al can be utilized in medical biotechnology is drug
target identification. By analyzing genomic data and protein-protein interaction data, Al can
identify potential therapeutic targets for the treatment of diseases. Machine learning algorithms can
identify patterns and correlations that may not be apparent to humans.

Drug screening: Another application of Al in medical biotechnology is drug screening. Al can
analyze data on the activity of potential drugs against different targets and identify those most
likely to be effective. Machine learning algorithms can predict the likelihood of a particular drug
being effective based on its characteristics and the characteristics of the target.

Image screening: Al can also be utilized in medical image screening. By analyzing CT scans and
MRI images, Al can identify abnormalities and diagnose diseases. Deep learning algorithms can
automatically segment and classify structures in medical images.

Predictive Modeling: Al can be used for predictive modeling. By analyzing data from electronic
health records and wearable devices, machine learning algorithms can make predictions about an
individual's health. This includes predicting the likelihood of an individual developing a particular
disease or the likelihood of a particular treatment being effective.

9. Cardiovascular Disease

The field of cardiovascular medicine has a rich history of employing predictive modeling to
evaluate patient risk. Recent advancements have enabled the prediction of heart failure and other
cardiac events in asymptomatic individuals. When utilized in conjunction with personalized
prevention strategies, these predictive models hold the potential to have a positive impact on
disease incidence and its effects. The intricacy of diseases such as cardiovascular disease
necessitates the integration of various factors, including gender, genetics, lifestyle, and
environmental factors. As a result, it is critical to consider the heterogeneity of the data, and
artificial intelligence (Al) approaches have exhibited promise in identifying intricate connections
among a vast number of factors. A Vanderbilt study showcased the early successes of merging
electronic health record (EHR) and genetic data, yielding favorable outcomes in cardiovascular
disease prediction [Zhao, et al., 2019]. Al-powered recognition of phenotype features via EHR or
images and correlating those features with genetic variants may enable more rapid genetic disease
diagnosis [Gurovich et al., 2019].

Future Prospects

The field of genomics is rapidly advancing, and machine learning is expected to have a significant
impact in several areas. One of these areas is the development of patient-specific pharmaceutical
drugs. Machine learning models are being used to determine stable doses of drugs including those
commonly administered to patients following solid organ transplants to prevent acute rejection of
the new organ. Pharmacogenomics is an emerging field that uses genetics to understand how
individuals respond to drugs, and machine learning is expected to play a crucial role in this field.
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Another area where machine learning is expected to have a significant impact is in newborn
genetic screening. As this practice becomes more widespread, data collected at birth will be
integrated into individuals' electronic health records. Non-invasive screening capabilities for
diseases such as Down Syndrome may be available to women during pregnancy.

Roadblocks

Managing, analyzing, and storing the large amounts of data generated by healthcare and genomics
industries is a daunting task. Current data management systems face various challenges, such as
data sharing, analysis cost, data ownership, privacy, and security. Researchers have developed
different solutions to tackle these problems, including Data Cloud Architecture, Data Commons,
and Data Ecosystem. However, these solutions still have scalability and flexibility issues.

Recently, blockchain technology has emerged as a promising solution to address these challenges.
With its decentralized, distributed, and immutable nature, blockchain can provide secure and
transparent data management solutions. Moreover, blockchain can reduce the analysis cost of
genomics and healthcare applications by enabling faster and more efficient transactions compared
to traditional processes.

Blockchain technology also offers pseudo-anonymity to ensure personal data security and privacy.
Individuals can modify their data access permissions and use encryption methods, such as
symmetric encryption, to secure their data further [Garg, 2023b]. Thus, blockchain technology has
enormous potential to be a valuable cornerstone in building a Data Ecosystem for healthcare
applications.

Blockchain as a Way-out

Blockchain technology can revolutionize the healthcare industry by enabling secure, transparent,
and efficient sharing of electronic health records (EHRs) and genetic test results. The use of
blockchain technology has led to the development of several platforms such as Coral Health,
Patientory, Medicalchain, and GemQOS, all built on Ethereum and Hyperledger protocols.

Coral Health is a data sharing platform that creates a secure and accessible healthcare ecosystem
through a precision medicine program. The system uses SMART and FHIR protocols to connect
mobile devices of patients and other environments hosting their medical data [Coral Health, 2023].
EncrypGen and Gene-Chain are other platforms that use blockchain technology to de-identify
genomic data and enable safe, traceable, and unhackable transactions of genomic data.

Health Nexus is an open-source blockchain protocol that offers a more efficient, trustworthy, and
secure path for data to travel in the healthcare community. Medicalchain is an EHR sharing project
that employs a dual blockchain structure with Hyperledger controlling access to health records and
Ethereum underlies all the applications and services. MedRec and Opal are other encrypted
platforms that use blockchain technology to manage authentication, confidentiality, accountability,
and data sharing of sensitive healthcare information.

Nebula Genomics is a platform that leverages blockchain technology to empower individuals to
own their personal genomic data, lower sequencing costs, and enhance data privacy. The platform
uses an open protocol to enable data buyers to efficiently aggregate standardized data from many
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individuals and genomic databanks [Nebula Genomics, 2023]. Zenome is another platform that
focuses on genetic data sharing and has an Ethereum-based ZNA token [Kulemin, Popov &
Gorbachev, 2017].

These platforms offer a scalable and flexible approach to patient-centric healthcare and
personalized medicine and present an exciting opportunity for innovation in data transfer for the
healthcare community.

Discussion

In recent years, Artificial Intelligence (Al) has played a significant role in the biotechnology
industry, particularly in fields such as drug discovery, drug safety, proteomics, pharmacology, and
pharmacogenetics. These fields require the storage, filtering, analysis, and sharing of large
amounts of data, and Al software solutions have provided support to increase speed and reduce
manual errors [McAlister et al., 2017; Ginsburg and Phillips, 2018]. The adoption of new
technologies and processes to improve efficiency, accuracy, and speed through digital
transformation can further accelerate the development and use of Al in biotechnology.

In healthcare, the successful adoption of Al is dependent on three key principles: data and security,
analytics and insights, and shared expertise. Shared expertise refers to the complementary
relationship between Al systems and human professionals. Moreover, precision medicine, which
aims to personalize care for every individual, is providing an equal or even greater influence than
Al on the direction of healthcare. Precision medicine requires access to massive amounts of data,
and the convergence of Al and precision medicine can accelerate the goals of personalized care
and tightly couple Al to healthcare providers for the foreseeable future.

The future of biotechnology and healthcare is dependent on several key areas, including genomics,
Al, big data, and blockchain. Precision medicine is one of the target areas in this field, with
numerous advantages such as more accurate diagnoses, easy access to medical data, and a better
understanding of diseases and their causes [Hasin et al., 2017]. However, implementing precision
medicine can be challenging due to the lack of a system to compare multi-omics patient data and
identify appropriate approaches to use with different types of medical data [Picard et al., 2021].
Ethical and logistical issues also need to be considered in clinical genomics, big data, and
pharmacogenomics implementation.

To address these challenges, multiple approaches need to be integrated into precision medicine. By
combining information from different fields, researchers can gain a more comprehensive
understanding of a medical case and select an appropriate treatment method. For example, the
integration of Al and genomics has led to significant developments in disease analysis and
prediction, resulting in faster decision-making.

However, the integration of multi-omics datasets is crucial in capturing the complexity of each
omics approach. More benchmark studies are needed to determine the best machine-learning
strategy to implement. Multi-omics integrative models can help in understanding disease
abnormalities that are not always possible with only genomic or other single-omics analysis.

The field of precision medicine has seen remarkable growth with the advent of advancements in
Al, healthcare, clinical genomics, and pharmacogenomics. These developments have generated an
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enormous amount of data, which can provide insights into personalized treatment options.
However, incomplete or inaccurate healthcare-specific information in open access clinical data and
claims data presents difficulties in determining how patient-specific treatment is appropriate or
effective. The same limitation exists in genomic databases, where data cannot be easily transferred
from one database to another. These limitations complicate the process of cross-referencing data
between different databases, which can prove to be an obstacle to efficient patient treatment.

Pharmacogenomics focuses on an individual's reaction to specific treatments and medications
rather than the disease itself. By correlating a patient's genomic makeup and their reaction to
treatments, it allows for more precise and personalized prescription of treatment. However, this
field is still developing and has not been utilized reliably.

The large influx of data generated in precision medicine presents an issue, as no reliable or
standardized means of analysis has been developed. The use of Al and ML techniques alleviates
this issue by allowing for efficient data management and the ability to recognize patterns in
complex datasets. These techniques can predict pharmaceutical properties of drug targets and drug
candidates, which is especially beneficial in clinical settings.

Conclusion

The integration of artificial intelligence (Al), machine learning (ML), and blockchain technology
in the fields of genomics, healthcare, and biotechnology has the potential to modernize these
industries. Al can improve diagnosis accuracy, aid in clinical decision-making, and provide
personalized patient experiences. However, ethical and social considerations must be taken into
account.

ML is increasingly important in genomics research and may become an even more crucial tool in
unlocking the secrets of the genome. In the healthcare sector, the integration of Al and ML can
revolutionize patient care by improving access to data and using it more efficiently. Additionally,
the development of precision medicine requires a combination of different approaches.

Blockchain technology can enhance security and transparency in the storage and sharing of patient
data. However, energy and computation efficiency should be considered when implementing this
technology. Despite the challenges that need to be addressed, the potential benefits of these
technologies in improving patient care and disease prevention cannot be overlooked.

The impact of big data analytics and Al on the healthcare industry is enormous. Al-based tools can
help mitigate healthcare fraud, medical coding errors, and improve patient care. Healthcare
policymakers and government also use Al-based tools to control and predict infections and
outbreaks. With the advent of COVID-19, Al models can predict at-risk populations and provide
additional risk information to clinicians caring for at-risk patients. In our journey towards a
progressively technology-driven future, it is crucial that we place utmost importance on the well-
being of every individual inhabiting our planet.
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